WizardCoder:利用Evol-Instruct赋能编码大型语言模型
WizardCoder: Empowering Code Large Language Models with Evol-Instruct
June 14, 2023
作者: Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, Qingwei Lin, Daxin Jiang
cs.AI
摘要
大型语言模型编码(Code LLMs),如StarCoder,在与代码相关的任务中表现出色。然而,大多数现有模型仅在广泛的原始代码数据上进行预训练,没有进行指导微调。本文介绍了WizardCoder,它通过将Evol-Instruct方法调整到代码领域,为Code LLMs提供了复杂的指导微调能力。通过在四个著名的代码生成基准上进行全面实验,即HumanEval、HumanEval+、MBPP和DS-1000,我们展示了我们模型的卓越能力。它在所有其他开源Code LLMs上取得了显著的优势。此外,我们的模型甚至在HumanEval和HumanEval+上超越了最大的封闭LLMs,Anthropic的Claude和Google的Bard。我们的代码、模型权重和数据可在https://github.com/nlpxucan/WizardLM 上公开获取。
English
Code Large Language Models (Code LLMs), such as StarCoder, have demonstrated
exceptional performance in code-related tasks. However, most existing models
are solely pre-trained on extensive raw code data without instruction
fine-tuning. In this paper, we introduce WizardCoder, which empowers Code LLMs
with complex instruction fine-tuning, by adapting the Evol-Instruct method to
the domain of code. Through comprehensive experiments on four prominent code
generation benchmarks, namely HumanEval, HumanEval+, MBPP, and DS-1000, we
unveil the exceptional capabilities of our model. It surpasses all other
open-source Code LLMs by a substantial margin. Moreover, our model even
outperforms the largest closed LLMs, Anthropic's Claude and Google's Bard, on
HumanEval and HumanEval+. Our code, model weights, and data are public at
https://github.com/nlpxucan/WizardLM