ChatPaper.aiChatPaper

CMI-Bench:音乐指令跟随的综合性评估基准

CMI-Bench: A Comprehensive Benchmark for Evaluating Music Instruction Following

June 14, 2025
作者: Yinghao Ma, Siyou Li, Juntao Yu, Emmanouil Benetos, Akira Maezawa
cs.AI

摘要

近期,音频-文本大语言模型(LLMs)的进展为音乐理解与生成开辟了新途径。然而,现有基准测试范围有限,多依赖简化任务或多选评估,难以反映现实世界音乐分析的复杂性。我们重新诠释了一系列传统音乐信息检索(MIR)标注,将其转化为指令跟随格式,并推出了CMI-Bench——一个全面的音乐指令跟随基准,旨在评估音频-文本LLMs在多样化MIR任务上的表现。这些任务涵盖流派分类、情感回归、情感标注、乐器分类、音高估计、调性检测、歌词转录、旋律提取、演唱技巧识别、乐器演奏技巧检测、音乐标签、音乐描述以及(下)拍跟踪,反映了MIR研究的核心挑战。与以往基准不同,CMI-Bench采用与先前最先进MIR模型一致的标准化评估指标,确保与监督方法的直接可比性。我们提供了一个评估工具包,支持所有开源音频-文本LLMs,包括LTU、Qwen-audio、SALMONN、MusiLingo等。实验结果揭示了LLMs与监督模型之间的显著性能差距,以及它们在文化、时代和性别上的偏见,凸显了当前模型在处理MIR任务上的潜力与局限。CMI-Bench为评估音乐指令跟随建立了统一基础,推动了音乐感知LLMs的进步。
English
Recent advances in audio-text large language models (LLMs) have opened new possibilities for music understanding and generation. However, existing benchmarks are limited in scope, often relying on simplified tasks or multi-choice evaluations that fail to reflect the complexity of real-world music analysis. We reinterpret a broad range of traditional MIR annotations as instruction-following formats and introduce CMI-Bench, a comprehensive music instruction following benchmark designed to evaluate audio-text LLMs on a diverse set of music information retrieval (MIR) tasks. These include genre classification, emotion regression, emotion tagging, instrument classification, pitch estimation, key detection, lyrics transcription, melody extraction, vocal technique recognition, instrument performance technique detection, music tagging, music captioning, and (down)beat tracking: reflecting core challenges in MIR research. Unlike previous benchmarks, CMI-Bench adopts standardized evaluation metrics consistent with previous state-of-the-art MIR models, ensuring direct comparability with supervised approaches. We provide an evaluation toolkit supporting all open-source audio-textual LLMs, including LTU, Qwen-audio, SALMONN, MusiLingo, etc. Experiment results reveal significant performance gaps between LLMs and supervised models, along with their culture, chronological and gender bias, highlighting the potential and limitations of current models in addressing MIR tasks. CMI-Bench establishes a unified foundation for evaluating music instruction following, driving progress in music-aware LLMs.
PDF472June 18, 2025