Lean 4中的统计学习理论:从零开始的实证过程
Statistical Learning Theory in Lean 4: Empirical Processes from Scratch
February 2, 2026
作者: Yuanhe Zhang, Jason D. Lee, Fanghui Liu
cs.AI
摘要
我们首次在经验过程理论基础上实现了统计学习理论(SLT)的完整Lean 4形式化。该端到端的形式化基础设施填补了最新Lean 4 Mathlib库的空白,包含高斯利普希茨集中性的完整推导、达德利熵积分定理在次高斯过程中的首次形式化,以及带有尖锐收敛速率的最小二乘(稀疏)回归应用。项目采用人机协同工作流完成:人类设计证明策略,智能体执行战术性证明构建,最终形成经过人工验证的SLT工具箱。除实现外,形式化过程还揭示并修正了标准SLT教材中隐含的假设与缺失细节,推动了对理论逐行级的精细化理解。此项工作建立了可复用的形式化基础,为机器学习理论的未来发展开辟了道路。代码详见https://github.com/YuanheZ/lean-stat-learning-theory。
English
We present the first comprehensive Lean 4 formalization of statistical learning theory (SLT) grounded in empirical process theory. Our end-to-end formal infrastructure implement the missing contents in latest Lean 4 Mathlib library, including a complete development of Gaussian Lipschitz concentration, the first formalization of Dudley's entropy integral theorem for sub-Gaussian processes, and an application to least-squares (sparse) regression with a sharp rate. The project was carried out using a human-AI collaborative workflow, in which humans design proof strategies and AI agents execute tactical proof construction, leading to the human-verified Lean 4 toolbox for SLT. Beyond implementation, the formalization process exposes and resolves implicit assumptions and missing details in standard SLT textbooks, enforcing a granular, line-by-line understanding of the theory. This work establishes a reusable formal foundation and opens the door for future developments in machine learning theory. The code is available at https://github.com/YuanheZ/lean-stat-learning-theory