ChatPaper.aiChatPaper

JavisGPT:面向音视频理解与生成的统一多模态大语言模型

JavisGPT: A Unified Multi-modal LLM for Sounding-Video Comprehension and Generation

December 28, 2025
作者: Kai Liu, Jungang Li, Yuchong Sun, Shengqiong Wu, Jianzhang Gao, Daoan Zhang, Wei Zhang, Sheng Jin, Sicheng Yu, Geng Zhan, Jiayi Ji, Fan Zhou, Liang Zheng, Shuicheng Yan, Hao Fei, Tat-Seng Chua
cs.AI

摘要

本文提出JavisGPT——首个面向音视频联合理解与生成任务的多模态大语言模型。该模型采用简洁的编码器-LLM-解码器架构,通过同步融合模块实现时空音视频特征融合,并利用同步感知可学习查询桥接预训练的音视频扩散Transformer生成器,从而基于多模态指令实现时序一致的多模态理解与生成。我们设计了三阶段训练流程:多模态预训练、音视频微调与大规模指令调优,逐步增强现有视觉语言模型的多模态能力。为支撑训练,我们构建了包含20万条GPT-4o标注音视频文本对话的高质量指令集JavisInst-Omni,涵盖多样化、多层级的理解与生成场景。在音视频理解与生成基准测试中,JavisGPT显著优于现有多模态大模型,尤其在复杂时序同步任务中表现突出。
English
This paper presents JavisGPT, the first unified multimodal large language model (MLLM) for Joint Audio-Video (JAV) comprehension and generation. JavisGPT adopts a concise encoder-LLM-decoder architecture, featuring a SyncFusion module for spatio-temporal audio-video fusion and synchrony-aware learnable queries to bridge a pretrained JAV-DiT generator. This design enables temporally coherent video-audio understanding and generation from multimodal instructions. We design an effective three-stage training pipeline consisting of multimodal pretraining, audio-video fine-tuning, and large-scale instruction-tuning, to progressively build multimodal comprehension and generation from existing vision-language models. To support this, we further construct JavisInst-Omni, a high-quality instruction dataset with over 200K GPT-4o-curated audio-video-text dialogues that span diverse and multi-level comprehension and generation scenarios. Extensive experiments on JAV comprehension and generation benchmarks show that JavisGPT outperforms existing MLLMs, particularly in complex and temporally synchronized settings.
PDF41January 2, 2026