机器人乒乓球:高速学习系统案例研究
Robotic Table Tennis: A Case Study into a High Speed Learning System
September 6, 2023
作者: David B. D'Ambrosio, Jonathan Abelian, Saminda Abeyruwan, Michael Ahn, Alex Bewley, Justin Boyd, Krzysztof Choromanski, Omar Cortes, Erwin Coumans, Tianli Ding, Wenbo Gao, Laura Graesser, Atil Iscen, Navdeep Jaitly, Deepali Jain, Juhana Kangaspunta, Satoshi Kataoka, Gus Kouretas, Yuheng Kuang, Nevena Lazic, Corey Lynch, Reza Mahjourian, Sherry Q. Moore, Thinh Nguyen, Ken Oslund, Barney J Reed, Krista Reymann, Pannag R. Sanketi, Anish Shankar, Pierre Sermanet, Vikas Sindhwani, Avi Singh, Vincent Vanhoucke, Grace Vesom, Peng Xu
cs.AI
摘要
我们深入研究了一个真实世界的机器人学习系统,先前的工作表明该系统能够与人类进行数百次乒乓球对打,并且能够精确地将球返回到指定目标。该系统整合了高度优化的感知子系统、高速低延迟的机器人控制器、一个可以在真实世界中防止损坏并训练零样本迁移策略的模拟范式,以及自动化的真实世界环境重置,实现了在物理机器人上的自主训练和评估。我们补充了完整的系统描述,包括通常不广泛传播的许多设计决策,以及一系列研究,阐明了减轻各种延迟来源的重要性、考虑训练和部署分布变化、感知系统的稳健性、策略超参数的敏感性以及动作空间的选择。可以在以下链接找到展示系统组件和实验结果细节的视频:https://youtu.be/uFcnWjB42I0。
English
We present a deep-dive into a real-world robotic learning system that, in
previous work, was shown to be capable of hundreds of table tennis rallies with
a human and has the ability to precisely return the ball to desired targets.
This system puts together a highly optimized perception subsystem, a high-speed
low-latency robot controller, a simulation paradigm that can prevent damage in
the real world and also train policies for zero-shot transfer, and automated
real world environment resets that enable autonomous training and evaluation on
physical robots. We complement a complete system description, including
numerous design decisions that are typically not widely disseminated, with a
collection of studies that clarify the importance of mitigating various sources
of latency, accounting for training and deployment distribution shifts,
robustness of the perception system, sensitivity to policy hyper-parameters,
and choice of action space. A video demonstrating the components of the system
and details of experimental results can be found at
https://youtu.be/uFcnWjB42I0.