Shap-E:生成条件3D隐式函数
Shap-E: Generating Conditional 3D Implicit Functions
May 3, 2023
作者: Heewoo Jun, Alex Nichol
cs.AI
摘要
我们提出了Shap-E,这是一个用于3D资产的条件生成模型。与最近关于3D生成模型的工作不同,这些模型产生单个输出表示,Shap-E直接生成可以呈现为纹理网格和神经辐射场的隐式函数的参数。我们通过两个阶段来训练Shap-E:首先,我们训练一个编码器,将3D资产确定性地映射到隐式函数的参数;其次,我们在编码器的输出上训练一个条件扩散模型。当在大型配对的3D和文本数据集上进行训练时,我们得到的模型能够在几秒钟内生成复杂且多样化的3D资产。与Point-E相比,Point-E是一个基于点云的显式生成模型,Shap-E收敛更快,并且在建模更高维度、多表示输出空间的情况下,达到了可比较或更好的样本质量。我们在https://github.com/openai/shap-e发布了模型权重、推理代码和样本。
English
We present Shap-E, a conditional generative model for 3D assets. Unlike
recent work on 3D generative models which produce a single output
representation, Shap-E directly generates the parameters of implicit functions
that can be rendered as both textured meshes and neural radiance fields. We
train Shap-E in two stages: first, we train an encoder that deterministically
maps 3D assets into the parameters of an implicit function; second, we train a
conditional diffusion model on outputs of the encoder. When trained on a large
dataset of paired 3D and text data, our resulting models are capable of
generating complex and diverse 3D assets in a matter of seconds. When compared
to Point-E, an explicit generative model over point clouds, Shap-E converges
faster and reaches comparable or better sample quality despite modeling a
higher-dimensional, multi-representation output space. We release model
weights, inference code, and samples at https://github.com/openai/shap-e.