不确定性位置:大型语言模型中位置偏差的跨语言研究
Position of Uncertainty: A Cross-Linguistic Study of Positional Bias in Large Language Models
May 22, 2025
作者: Menschikov Mikhail, Alexander Kharitonov, Maiia Kotyga, Vadim Porvatov, Anna Zhukovskaya, David Kagramanyan, Egor Shvetsov, Evgeny Burnaev
cs.AI
摘要
大型语言模型展现出位置偏差——即对特定上下文位置信息的系统性忽视——然而其与语言多样性的相互作用仍鲜为人知。我们开展了一项跨语言研究,涵盖五种类型学上迥异的语言(英语、俄语、德语、印地语、越南语),探讨位置偏差如何与模型不确定性、句法结构及提示方式相互影响。主要发现如下:(1) 位置偏差由模型驱动,且存在语言特异性变化——Qwen2.5-7B偏好后置信息,挑战了早期令牌偏差的假设;(2) 明确的定位指导(如,正确信息位于位置X)降低了跨语言的准确性,削弱了提示工程实践的效果;(3) 使上下文与位置偏差对齐会增加熵值,但最低熵值并不能预测准确性。(4) 我们进一步发现,在印地语等自由词序语言中,大型语言模型对主导词序的施加方式有所不同。
English
Large language models exhibit positional bias -- systematic neglect of
information at specific context positions -- yet its interplay with linguistic
diversity remains poorly understood. We present a cross-linguistic study across
five typologically distinct languages (English, Russian, German, Hindi,
Vietnamese), examining how positional bias interacts with model uncertainty,
syntax, and prompting. Key findings: (1) Positional bias is model-driven, with
language-specific variations -- Qwen2.5-7B favors late positions, challenging
assumptions of early-token bias; (2) Explicit positional guidance (e.g.,
correct context is at position X) reduces accuracy across languages,
undermining prompt-engineering practices; (3) Aligning context with positional
bias increases entropy, yet minimal entropy does not predict accuracy. (4) We
further uncover that LLMs differently impose dominant word order in
free-word-order languages like Hindi.Summary
AI-Generated Summary