HY3D-Bench:三维资产生成技术平台
HY3D-Bench: Generation of 3D Assets
February 3, 2026
作者: Team Hunyuan3D, Bowen Zhang, Chunchao Guo, Dongyuan Guo, Haolin Liu, Hongyu Yan, Huiwen Shi, Jiaao Yu, Jiachen Xu, Jingwei Huang, Kunhong Li, Lifu Wang, Linus, Penghao Wang, Qingxiang Lin, Ruining Tang, Xianghui Yang, Yang Li, Yirui Guan, Yunfei Zhao, Yunhan Yang, Zeqiang Lai, Zhihao Liang, Zibo Zhao
cs.AI
摘要
尽管神经表征与生成模型的最新进展已彻底改变三维内容创作领域,但数据处理瓶颈仍制约着该领域发展。为此,我们推出开源生态系统HY3D-Bench,旨在为三维生成建立统一的高质量基准。我们的贡献包含三方面:(1)从大规模资源库中精选25万个高保真三维对象,通过严格流程提供包含水密网格和多视角渲染的训练就绪素材;(2)引入结构化部件级分解方案,为细粒度感知与可控编辑提供关键技术支持;(3)通过可扩展的AIGC合成流程弥合现实数据分布差距,新增12.5万合成资源以增强长尾类别多样性。基于Hunyuan3D-2.1-Small模型的实证验证表明,HY3D-Bench通过开放高质量数据资源,有望推动三维感知、机器人及数字内容创作等领域的创新突破。
English
While recent advances in neural representations and generative models have revolutionized 3D content creation, the field remains constrained by significant data processing bottlenecks. To address this, we introduce HY3D-Bench, an open-source ecosystem designed to establish a unified, high-quality foundation for 3D generation. Our contributions are threefold: (1) We curate a library of 250k high-fidelity 3D objects distilled from large-scale repositories, employing a rigorous pipeline to deliver training-ready artifacts, including watertight meshes and multi-view renderings; (2) We introduce structured part-level decomposition, providing the granularity essential for fine-grained perception and controllable editing; and (3) We bridge real-world distribution gaps via a scalable AIGC synthesis pipeline, contributing 125k synthetic assets to enhance diversity in long-tail categories. Validated empirically through the training of Hunyuan3D-2.1-Small, HY3D-Bench democratizes access to robust data resources, aiming to catalyze innovation across 3D perception, robotics, and digital content creation.