ChatPaper.aiChatPaper

构建基于大语言模型的智能体评估统一框架的必要性

The Necessity of a Unified Framework for LLM-Based Agent Evaluation

February 3, 2026
作者: Pengyu Zhu, Li Sun, Philip S. Yu, Sen Su
cs.AI

摘要

随着大语言模型(LLM)的出现,通用智能体的基础能力取得了突破性进展。然而,评估这类智能体面临着与静态问答基准截然不同的独特挑战。我们发现当前智能体基准测试受到诸多外部因素的严重干扰,包括系统提示词、工具集配置和环境动态等。现有评估往往依赖碎片化、研究者自建的评价框架,其中推理与工具调用的提示工程方案差异显著,导致性能提升难以归因于模型本身。此外,由于缺乏标准化的环境数据,常出现错误难以追溯、结果无法复现的问题。这种标准化缺失给该领域带来了严重的不公平性和不透明性。我们认为建立统一评估框架对推动智能体评估的严谨发展至关重要。为此,我们提出一项旨在实现智能体评估标准化的方案。
English
With the advent of Large Language Models (LLMs), general-purpose agents have seen fundamental advancements. However, evaluating these agents presents unique challenges that distinguish them from static QA benchmarks. We observe that current agent benchmarks are heavily confounded by extraneous factors, including system prompts, toolset configurations, and environmental dynamics. Existing evaluations often rely on fragmented, researcher-specific frameworks where the prompt engineering for reasoning and tool usage varies significantly, making it difficult to attribute performance gains to the model itself. Additionally, the lack of standardized environmental data leads to untraceable errors and non-reproducible results. This lack of standardization introduces substantial unfairness and opacity into the field. We propose that a unified evaluation framework is essential for the rigorous advancement of agent evaluation. To this end, we introduce a proposal aimed at standardizing agent evaluation.
PDF11February 5, 2026