视频对象分割感知的音频生成
Video Object Segmentation-Aware Audio Generation
September 30, 2025
作者: Ilpo Viertola, Vladimir Iashin, Esa Rahtu
cs.AI
摘要
现有的多模态音频生成模型往往缺乏精确的用户控制,这限制了它们在专业拟音工作流程中的应用。特别是,这些模型关注的是整个视频,并未提供针对场景中特定对象进行优先处理的方法,导致生成不必要的背景声音或聚焦于错误的对象。为解决这一问题,我们引入了视频对象分割感知音频生成这一新任务,该任务明确地将声音合成建立在对象级分割图的基础上。我们提出了SAGANet,一种新的多模态生成模型,它通过结合视觉分割掩码、视频和文本线索,实现了可控的音频生成。我们的模型为用户提供了细粒度且视觉定位的音频生成控制。为支持这一任务并推动分割感知拟音的进一步研究,我们提出了Segmented Music Solos,一个包含分割信息的乐器演奏视频基准数据集。我们的方法相较于当前最先进技术展现了显著改进,并为可控、高保真拟音合成设立了新标准。代码、样本及Segmented Music Solos数据集可在https://saganet.notion.site获取。
English
Existing multimodal audio generation models often lack precise user control,
which limits their applicability in professional Foley workflows. In
particular, these models focus on the entire video and do not provide precise
methods for prioritizing a specific object within a scene, generating
unnecessary background sounds, or focusing on the wrong objects. To address
this gap, we introduce the novel task of video object segmentation-aware audio
generation, which explicitly conditions sound synthesis on object-level
segmentation maps. We present SAGANet, a new multimodal generative model that
enables controllable audio generation by leveraging visual segmentation masks
along with video and textual cues. Our model provides users with fine-grained
and visually localized control over audio generation. To support this task and
further research on segmentation-aware Foley, we propose Segmented Music Solos,
a benchmark dataset of musical instrument performance videos with segmentation
information. Our method demonstrates substantial improvements over current
state-of-the-art methods and sets a new standard for controllable,
high-fidelity Foley synthesis. Code, samples, and Segmented Music Solos are
available at https://saganet.notion.site