从形式语言与自然语言视角解析大语言模型的三段论推理能力
Understanding Syllogistic Reasoning in LLMs from Formal and Natural Language Perspectives
December 14, 2025
作者: Aheli Poddar, Saptarshi Sahoo, Sujata Ghosh
cs.AI
摘要
我们从逻辑与自然语言双重视角研究大语言模型的三段论推理能力。在此过程中,我们深入探索了大语言模型的基础推理能力及其研究发展方向。为辅助研究,我们选取了14个大语言模型,分别从符号推理和自然语言理解两个维度考察其三段论推理表现。尽管这种推理机制并非所有大语言模型普遍具备的涌现特性,但某些模型在符号推理上的完美表现促使我们思考:大语言模型是否正逐渐演变为形式化推理机制,而非真正揭示人类推理的微妙之处。
English
We study syllogistic reasoning in LLMs from the logical and natural language perspectives. In process, we explore fundamental reasoning capabilities of the LLMs and the direction this research is moving forward. To aid in our studies, we use 14 large language models and investigate their syllogistic reasoning capabilities in terms of symbolic inferences as well as natural language understanding. Even though this reasoning mechanism is not a uniform emergent property across LLMs, the perfect symbolic performances in certain models make us wonder whether LLMs are becoming more and more formal reasoning mechanisms, rather than making explicit the nuances of human reasoning.