MixRT:混合神经表示用于实时NeRF渲染。
MixRT: Mixed Neural Representations For Real-Time NeRF Rendering
December 19, 2023
作者: Chaojian Li, Bichen Wu, Peter Vajda, Yingyan, Lin
cs.AI
摘要
神经辐射场(NeRF)已成为新视角合成的领先技术,因其令人印象深刻的逼真重建和渲染能力而闻名。然而,在大规模场景中实现实时NeRF渲染存在挑战,通常需要采用要么复杂的烘焙网格表示,要么资源密集的烘焙表示中的光线行进,我们挑战这些传统,观察到高质量几何,用大量三角形表示的网格并非实现逼真渲染质量所必需。因此,我们提出了MixRT,一种新颖的NeRF表示,包括低质量网格、视角相关位移图和压缩的NeRF模型。这种设计有效地利用了现有图形硬件的能力,从而实现了边缘设备上的实时NeRF渲染。利用高度优化的基于WebGL的渲染框架,我们提出的MixRT在边缘设备上实现了实时渲染速度(在MacBook M1 Pro笔记本上以1280 x 720分辨率超过30 FPS),更好的渲染质量(在Unbounded-360数据集的室内场景中高出0.2 PSNR),以及更小的存储空间(与最先进方法相比少于80%)。
English
Neural Radiance Field (NeRF) has emerged as a leading technique for novel
view synthesis, owing to its impressive photorealistic reconstruction and
rendering capability. Nevertheless, achieving real-time NeRF rendering in
large-scale scenes has presented challenges, often leading to the adoption of
either intricate baked mesh representations with a substantial number of
triangles or resource-intensive ray marching in baked representations. We
challenge these conventions, observing that high-quality geometry, represented
by meshes with substantial triangles, is not necessary for achieving
photorealistic rendering quality. Consequently, we propose MixRT, a novel NeRF
representation that includes a low-quality mesh, a view-dependent displacement
map, and a compressed NeRF model. This design effectively harnesses the
capabilities of existing graphics hardware, thus enabling real-time NeRF
rendering on edge devices. Leveraging a highly-optimized WebGL-based rendering
framework, our proposed MixRT attains real-time rendering speeds on edge
devices (over 30 FPS at a resolution of 1280 x 720 on a MacBook M1 Pro laptop),
better rendering quality (0.2 PSNR higher in indoor scenes of the Unbounded-360
datasets), and a smaller storage size (less than 80% compared to
state-of-the-art methods).