在有限预算下训练材料基础模型
Training a Foundation Model for Materials on a Budget
August 22, 2025
作者: Teddy Koker, Tess Smidt
cs.AI
摘要
材料建模的基础模型正在快速发展,但其训练成本依然高昂,往往使得许多研究团队难以触及最先进的方法。我们推出了Nequix,一种紧凑的E(3)等变势能模型,它结合了简化的NequIP架构与现代训练实践,包括等变均方根层归一化和Muon优化器,在保持精度的同时大幅降低了计算需求。基于JAX构建的Nequix拥有70万参数,仅用500个A100 GPU小时完成训练。在Matbench-Discovery和MDR Phonon基准测试中,Nequix总体排名第三,而所需训练成本不到大多数其他方法的四分之一,并且其推理速度比当前排名第一的模型快一个数量级。我们在https://github.com/atomicarchitects/nequix上发布了模型权重及完全可复现的代码库。
English
Foundation models for materials modeling are advancing quickly, but their
training remains expensive, often placing state-of-the-art methods out of reach
for many research groups. We introduce Nequix, a compact E(3)-equivariant
potential that pairs a simplified NequIP design with modern training practices,
including equivariant root-mean-square layer normalization and the Muon
optimizer, to retain accuracy while substantially reducing compute
requirements. Built in JAX, Nequix has 700K parameters and was trained in 500
A100-GPU hours. On the Matbench-Discovery and MDR Phonon benchmarks, Nequix
ranks third overall while requiring less than one quarter of the training cost
of most other methods, and it delivers an order-of-magnitude faster inference
speed than the current top-ranked model. We release model weights and fully
reproducible codebase at https://github.com/atomicarchitects/nequix