Intern-S1:一款科学多模态基础模型
Intern-S1: A Scientific Multimodal Foundation Model
August 21, 2025
作者: Lei Bai, Zhongrui Cai, Maosong Cao, Weihan Cao, Chiyu Chen, Haojiong Chen, Kai Chen, Pengcheng Chen, Ying Chen, Yongkang Chen, Yu Cheng, Yu Cheng, Pei Chu, Tao Chu, Erfei Cui, Ganqu Cui, Long Cui, Ziyun Cui, Nianchen Deng, Ning Ding, Nanqin Dong, Peijie Dong, Shihan Dou, Sinan Du, Haodong Duan, Caihua Fan, Ben Gao, Changjiang Gao, Jianfei Gao, Songyang Gao, Yang Gao, Zhangwei Gao, Jiaye Ge, Qiming Ge, Lixin Gu, Yuzhe Gu, Aijia Guo, Qipeng Guo, Xu Guo, Conghui He, Junjun He, Yili Hong, Siyuan Hou, Caiyu Hu, Hanglei Hu, Jucheng Hu, Ming Hu, Zhouqi Hua, Haian Huang, Junhao Huang, Xu Huang, Zixian Huang, Zhe Jiang, Lingkai Kong, Linyang Li, Peiji Li, Pengze Li, Shuaibin Li, Tianbin Li, Wei Li, Yuqiang Li, Dahua Lin, Junyao Lin, Tianyi Lin, Zhishan Lin, Hongwei Liu, Jiangning Liu, Jiyao Liu, Junnan Liu, Kai Liu, Kaiwen Liu, Kuikun Liu, Shichun Liu, Shudong Liu, Wei Liu, Xinyao Liu, Yuhong Liu, Zhan Liu, Yinquan Lu, Haijun Lv, Hongxia Lv, Huijie Lv, Qidang Lv, Ying Lv, Chengqi Lyu, Chenglong Ma, Jianpeng Ma, Ren Ma, Runmin Ma, Runyuan Ma, Xinzhu Ma, Yichuan Ma, Zihan Ma, Sixuan Mi, Junzhi Ning, Wenchang Ning, Xinle Pang, Jiahui Peng, Runyu Peng, Yu Qiao, Jiantao Qiu, Xiaoye Qu, Yuan Qu, Yuchen Ren, Fukai Shang, Wenqi Shao, Junhao Shen, Shuaike Shen, Chunfeng Song, Demin Song, Diping Song, Chenlin Su, Weijie Su, Weigao Sun, Yu Sun, Qian Tan, Cheng Tang, Huanze Tang, Kexian Tang, Shixiang Tang, Jian Tong, Aoran Wang, Bin Wang, Dong Wang, Lintao Wang, Rui Wang, Weiyun Wang, Wenhai Wang, Yi Wang, Ziyi Wang, Ling-I Wu, Wen Wu, Yue Wu, Zijian Wu, Linchen Xiao, Shuhao Xing, Chao Xu, Huihui Xu, Jun Xu, Ruiliang Xu, Wanghan Xu, GanLin Yang, Yuming Yang, Haochen Ye, Jin Ye, Shenglong Ye, Jia Yu, Jiashuo Yu, Jing Yu, Fei Yuan, Bo Zhang, Chao Zhang, Chen Zhang, Hongjie Zhang, Jin Zhang, Qiaosheng Zhang, Qiuyinzhe Zhang, Songyang Zhang, Taolin Zhang, Wenlong Zhang, Wenwei Zhang, Yechen Zhang, Ziyang Zhang, Haiteng Zhao, Qian Zhao, Xiangyu Zhao, Xiangyu Zhao, Bowen Zhou, Dongzhan Zhou, Peiheng Zhou, Yuhao Zhou, Yunhua Zhou, Dongsheng Zhu, Lin Zhu, Yicheng Zou
cs.AI
摘要
近年来,众多开源基础模型崭露头角,在多个广受关注的领域取得了显著进展,其性能已接近闭源模型。然而,在高价值但更具挑战性的科学专业领域,这些领域仍依赖专家模型,或通用基础模型的进展相较于热门领域显著滞后,远不足以推动科研变革,且开源模型与闭源模型在这些科学领域间存在巨大差距。为缩小这一差距,并进一步探索迈向通用人工智能(AGI)的路径,我们推出了Intern-S1,这是一款具备通用理解与推理能力,并专长于分析多模态科学数据的专业通才模型。Intern-S1是一个多模态专家混合(MoE)模型,拥有280亿激活参数和2410亿总参数,持续预训练于5万亿标记数据之上,其中包括超过2.5万亿来自科学领域的标记。在训练后期,Intern-S1在InternBootCamp中经历了离线及在线强化学习(RL),我们提出了奖励混合(MoR)机制,以协同超过1000项任务的RL训练。通过算法、数据及训练系统的综合创新,Intern-S1在在线RL训练中达到了顶尖水平。在综合评估基准上,Intern-S1在开源模型中展现出通用推理任务的竞争力,并在科学领域显著超越其他开源模型,在分子合成规划、反应条件预测、晶体热力学稳定性预测等专业任务上,更是超越了闭源的最先进模型。我们的模型可在https://huggingface.co/internlm/Intern-S1获取。
English
In recent years, a plethora of open-source foundation models have emerged,
achieving remarkable progress in some widely attended fields, with performance
being quite close to that of closed-source models. However, in high-value but
more challenging scientific professional fields, either the fields still rely
on expert models, or the progress of general foundation models lags
significantly compared to those in popular areas, far from sufficient for
transforming scientific research and leaving substantial gap between
open-source models and closed-source models in these scientific domains. To
mitigate this gap and explore a step further toward Artificial General
Intelligence (AGI), we introduce Intern-S1, a specialized generalist equipped
with general understanding and reasoning capabilities with expertise to analyze
multiple science modal data. Intern-S1 is a multimodal Mixture-of-Experts (MoE)
model with 28 billion activated parameters and 241 billion total parameters,
continually pre-trained on 5T tokens, including over 2.5T tokens from
scientific domains. In the post-training stage, Intern-S1 undergoes offline and
then online reinforcement learning (RL) in InternBootCamp, where we propose
Mixture-of-Rewards (MoR) to synergize the RL training on more than 1000 tasks
simultaneously. Through integrated innovations in algorithms, data, and
training systems, Intern-S1 achieved top-tier performance in online RL
training.On comprehensive evaluation benchmarks, Intern-S1 demonstrates
competitive performance on general reasoning tasks among open-source models and
significantly outperforms open-source models in scientific domains, surpassing
closed-source state-of-the-art models in professional tasks, such as molecular
synthesis planning, reaction condition prediction, predicting thermodynamic
stabilities for crystals. Our models are available at
https://huggingface.co/internlm/Intern-S1.