LLMAEL:大型语言模型是实体链接的良好上下文增强器
LLMAEL: Large Language Models are Good Context Augmenters for Entity Linking
July 4, 2024
作者: Amy Xin, Yunjia Qi, Zijun Yao, Fangwei Zhu, Kaisheng Zeng, Xu Bin, Lei Hou, Juanzi Li
cs.AI
摘要
实体链接(EL)模型在根据给定上下文将提及映射到相应实体方面经过良好训练。然而,由于训练数据有限,EL模型在消歧长尾实体方面存在困难。与此同时,大型语言模型(LLMs)更擅长解释不常见的提及。然而,由于缺乏专门训练,LLMs在生成正确实体ID方面存在困难。此外,训练LLM执行EL是成本高昂的。基于这些见解,我们引入了LLM增强实体链接(LLMAEL),这是一种通过LLM数据增强来增强实体链接的即插即用方法。我们利用LLMs作为知识上下文增强器,生成以提及为中心的描述作为额外输入,同时保留传统EL模型进行特定任务处理。对6个标准数据集的实验表明,原始LLMAEL在大多数情况下优于基线EL模型,而经过微调的LLMAEL在所有6个基准测试中取得了新的最先进结果。
English
Entity Linking (EL) models are well-trained at mapping mentions to their
corresponding entities according to a given context. However, EL models
struggle to disambiguate long-tail entities due to their limited training data.
Meanwhile, large language models (LLMs) are more robust at interpreting
uncommon mentions. Yet, due to a lack of specialized training, LLMs suffer at
generating correct entity IDs. Furthermore, training an LLM to perform EL is
cost-intensive. Building upon these insights, we introduce LLM-Augmented Entity
Linking LLMAEL, a plug-and-play approach to enhance entity linking through LLM
data augmentation. We leverage LLMs as knowledgeable context augmenters,
generating mention-centered descriptions as additional input, while preserving
traditional EL models for task specific processing. Experiments on 6 standard
datasets show that the vanilla LLMAEL outperforms baseline EL models in most
cases, while the fine-tuned LLMAEL set the new state-of-the-art results across
all 6 benchmarks.Summary
AI-Generated Summary