智能多主体通信驱动的协同工作流建模:从沟通到完成
Communication to Completion: Modeling Collaborative Workflows with Intelligent Multi-Agent Communication
October 22, 2025
作者: Yiming Lu, Xun Wang, Simin Ma, Shujian Liu, Sathish Reddy Indurthi, Song Wang, Haoyun Deng, Fei Liu, Kaiqiang Song
cs.AI
摘要
针对复杂工作场景中的团队协作需要多样化的沟通策略,但现有多智能体大模型系统缺乏面向任务沟通的系统性框架。我们提出"任务达成型沟通框架"(C2C),这一可扩展框架通过两项关键创新填补空白:(1)引入"对齐度因子"这一新型指标,可量化智能体任务对齐程度并直接影响工作效率;(2)建立序列化行动框架,将分步执行与智能沟通决策相结合。C2C使智能体能够做出成本感知的沟通选择,通过精准交互动态提升任务理解能力。我们在三个复杂度层级、5至17个智能体规模的现实编码工作流中评估C2C,并与无沟通基准和固定步骤基准进行对比。结果表明,C2C在可接受的沟通成本下将任务完成时间缩短约40%。该框架在标准配置下成功完成所有任务,并具备规模化应用的有效性。C2C既为衡量多智能体系统沟通效能奠定了理论基础,也为复杂协作任务提供了实践框架。
English
Teamwork in workspace for complex tasks requires diverse communication
strategies, but current multi-agent LLM systems lack systematic frameworks for
task oriented communication. We introduce Communication to Completion (C2C), a
scalable framework that addresses this gap through two key innovations: (1) the
Alignment Factor (AF), a novel metric quantifying agent task alignment that
directly impacts work efficiency, and (2) a Sequential Action Framework that
integrates stepwise execution with intelligent communication decisions. C2C
enables agents to make cost aware communication choices, dynamically improving
task understanding through targeted interactions. We evaluated C2C on realistic
coding workflows across three complexity tiers and team sizes from 5 to 17
agents, comparing against no communication and fixed steps baselines. The
results show that C2C reduces the task completion time by about 40% with
acceptable communication costs. The framework completes all tasks successfully
in standard configurations and maintains effectiveness at scale. C2C
establishes both a theoretical foundation for measuring communication
effectiveness in multi-agent systems and a practical framework for complex
collaborative tasks.