使用大型重建模型进行单视角3D人体数字化
Single-View 3D Human Digitalization with Large Reconstruction Models
January 22, 2024
作者: Zhenzhen Weng, Jingyuan Liu, Hao Tan, Zhan Xu, Yang Zhou, Serena Yeung-Levy, Jimei Yang
cs.AI
摘要
本文介绍了Human-LRM,这是一个单阶段前馈大型重建模型,旨在从单个图像中预测人类神经辐射场(NeRF)。我们的方法展示了在使用包含3D扫描和多视角捕获的大量数据集进行训练时的显着适应性。此外,为了增强模型在野外场景中的适用性,特别是在存在遮挡的情况下,我们提出了一种新颖的策略,通过条件三平面扩散模型将多视角重建转化为单视角。这种生成性扩展解决了从单个视角观察时人体形状固有的变化,并使得能够从被遮挡的图像中重建完整的人体。通过大量实验,我们展示了Human-LRM在几个基准测试中明显优于先前的方法。
English
In this paper, we introduce Human-LRM, a single-stage feed-forward Large
Reconstruction Model designed to predict human Neural Radiance Fields (NeRF)
from a single image. Our approach demonstrates remarkable adaptability in
training using extensive datasets containing 3D scans and multi-view capture.
Furthermore, to enhance the model's applicability for in-the-wild scenarios
especially with occlusions, we propose a novel strategy that distills
multi-view reconstruction into single-view via a conditional triplane diffusion
model. This generative extension addresses the inherent variations in human
body shapes when observed from a single view, and makes it possible to
reconstruct the full body human from an occluded image. Through extensive
experiments, we show that Human-LRM surpasses previous methods by a significant
margin on several benchmarks.