ChatPaper.aiChatPaper

APIGen:用于生成可验证和多样化函数调用数据集的自动化流水线

APIGen: Automated Pipeline for Generating Verifiable and Diverse Function-Calling Datasets

June 26, 2024
作者: Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Shirley Kokane, Juntao Tan, Weiran Yao, Zhiwei Liu, Yihao Feng, Rithesh Murthy, Liangwei Yang, Silvio Savarese, Juan Carlos Niebles, Huan Wang, Shelby Heinecke, Caiming Xiong
cs.AI

摘要

功能调用代理模型的进展需要多样化、可靠和高质量的数据集。本文介绍了APIGen,这是一个自动化数据生成管道,旨在为功能调用应用程序合成可验证的高质量数据集。我们利用APIGen,收集了21个不同类别中的3,673个可执行API,以便以可扩展和结构化的方式生成多样化的功能调用数据集。我们的数据集中的每个数据都经过三个分层阶段的验证:格式检查、实际函数执行和语义验证,确保其可靠性和正确性。我们展示了使用我们精心策划的数据集训练的模型,即使只有70亿参数,也能在伯克利功能调用基准测试中取得最先进的性能,胜过多个GPT-4模型。此外,我们的10亿参数模型表现出色,超越了GPT-3.5-Turbo和Claude-3 Haiku。我们发布了一个包含60,000个高质量条目的数据集,旨在推动功能调用代理领域的发展。该数据集可在Huggingface上获取:https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k,项目主页:https://apigen-pipeline.github.io/
English
The advancement of function-calling agent models requires diverse, reliable, and high-quality datasets. This paper presents APIGen, an automated data generation pipeline designed to synthesize verifiable high-quality datasets for function-calling applications. We leverage APIGen and collect 3,673 executable APIs across 21 different categories to generate diverse function-calling datasets in a scalable and structured manner. Each data in our dataset is verified through three hierarchical stages: format checking, actual function executions, and semantic verification, ensuring its reliability and correctness. We demonstrate that models trained with our curated datasets, even with only 7B parameters, can achieve state-of-the-art performance on the Berkeley Function-Calling Benchmark, outperforming multiple GPT-4 models. Moreover, our 1B model achieves exceptional performance, surpassing GPT-3.5-Turbo and Claude-3 Haiku. We release a dataset containing 60,000 high-quality entries, aiming to advance the field of function-calling agent domains. The dataset is available on Huggingface: https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k and the project homepage: https://apigen-pipeline.github.io/

Summary

AI-Generated Summary

PDF251November 29, 2024