LLM-Blender:利用成对排名和生成融合对大型语言模型进行集成
LLM-Blender: Ensembling Large Language Models with Pairwise Ranking and Generative Fusion
June 5, 2023
作者: Dongfu Jiang, Xiang Ren, Bill Yuchen Lin
cs.AI
摘要
我们提出了LLM-Blender,这是一个集成框架,旨在通过利用多个开源大型语言模型(LLMs)的多样优势,实现始终优越的性能。我们的框架包括两个模块:PairRanker和GenFuser,解决了不同示例的最佳LLMs可能显著变化的观察。PairRanker采用专门的成对比较方法来区分候选输出之间的细微差异。它联合编码输入文本和一对候选项,使用交叉注意力编码器来确定哪个更优。我们的结果表明,PairRanker与基于ChatGPT的排名具有最高的相关性。然后,GenFuser旨在合并排名靠前的候选项,通过利用它们的优势并减轻它们的弱点,生成一个改进的输出。为了促进大规模评估,我们引入了一个基准数据集MixInstruct,这是多个指令数据集的混合,具有oracle成对比较。我们的LLM-Blender在各种指标上明显优于单个LLMs和基准方法,确立了实质性的性能差距。
English
We present LLM-Blender, an ensembling framework designed to attain
consistently superior performance by leveraging the diverse strengths of
multiple open-source large language models (LLMs). Our framework consists of
two modules: PairRanker and GenFuser, addressing the observation that optimal
LLMs for different examples can significantly vary. PairRanker employs a
specialized pairwise comparison method to distinguish subtle differences
between candidate outputs. It jointly encodes the input text and a pair of
candidates, using cross-attention encoders to determine the superior one. Our
results demonstrate that PairRanker exhibits the highest correlation with
ChatGPT-based ranking. Then, GenFuser aims to merge the top-ranked candidates,
generating an improved output by capitalizing on their strengths and mitigating
their weaknesses. To facilitate large-scale evaluation, we introduce a
benchmark dataset, MixInstruct, which is a mixture of multiple instruction
datasets featuring oracle pairwise comparisons. Our LLM-Blender significantly
outperform individual LLMs and baseline methods across various metrics,
establishing a substantial performance gap.