视觉-语言-动作模型的机制可解释性导向
Mechanistic interpretability for steering vision-language-action models
August 30, 2025
作者: Bear Häon, Kaylene Stocking, Ian Chuang, Claire Tomlin
cs.AI
摘要
视觉-语言-动作(VLA)模型是实现通用型具身智能体的有前景途径,这类智能体能够快速适应新任务、新模态和新环境。然而,当前用于解释和引导VLA模型的方法远不及传统机器人技术流程,后者基于明确的运动学、动力学和控制模型。这种机制性理解的缺失,是将在学习策略部署于现实世界机器人应用中的核心挑战,因为在这些场景中,鲁棒性和可解释性至关重要。受大语言模型机制可解释性进展的启发,我们首次提出了通过内部表示来解读和引导VLA模型的框架,使得在推理时能够直接干预模型行为。我们将Transformer层中的前馈激活投影到词嵌入基上,识别出与动作选择因果关联的稀疏语义方向——如速度和方向。基于这些发现,我们引入了一种通用的激活引导方法,无需微调、奖励信号或环境交互,即可实时调节行为。我们在两个最新的开源VLA模型Pi0和OpenVLA上评估了该方法,并在仿真环境(LIBERO)和物理机器人(UR5)上展示了零样本行为控制能力。本研究表明,具身VLA模型的可解释组件能够被系统地用于控制,为机器人学中透明且可引导的基础模型确立了新范式。
English
Vision-Language-Action (VLA) models are a promising path to realizing
generalist embodied agents that can quickly adapt to new tasks, modalities, and
environments. However, methods for interpreting and steering VLAs fall far
short of classical robotics pipelines, which are grounded in explicit models of
kinematics, dynamics, and control. This lack of mechanistic insight is a
central challenge for deploying learned policies in real-world robotics, where
robustness and explainability are critical. Motivated by advances in
mechanistic interpretability for large language models, we introduce the first
framework for interpreting and steering VLAs via their internal
representations, enabling direct intervention in model behavior at inference
time. We project feedforward activations within transformer layers onto the
token embedding basis, identifying sparse semantic directions - such as speed
and direction - that are causally linked to action selection. Leveraging these
findings, we introduce a general-purpose activation steering method that
modulates behavior in real time, without fine-tuning, reward signals, or
environment interaction. We evaluate this method on two recent open-source
VLAs, Pi0 and OpenVLA, and demonstrate zero-shot behavioral control in
simulation (LIBERO) and on a physical robot (UR5). This work demonstrates that
interpretable components of embodied VLAs can be systematically harnessed for
control - establishing a new paradigm for transparent and steerable foundation
models in robotics.