H2O-Danube-1.8B 技术报告
H2O-Danube-1.8B Technical Report
January 30, 2024
作者: Philipp Singer, Pascal Pfeiffer, Yauhen Babakhin, Maximilian Jeblick, Nischay Dhankhar, Gabor Fodor, Sri Satish Ambati
cs.AI
摘要
我们介绍了H2O-Danube-1.8B,这是一个在1T标记上训练的1.8B语言模型,遵循了LLama 2和Mistral的核心原则。我们利用并改进了各种用于预训练大型语言模型的技术。尽管与类似规模的参考模型相比,我们的模型在训练的总标记数量上明显较少,但在多个基准测试中表现出高竞争力的指标。我们还发布了一个通过监督微调和直接偏好优化训练的聊天模型。我们以Apache 2.0许可证开放了H2O-Danube-1.8B,进一步使更广泛的受众经济上获得LLM的机会。
English
We present H2O-Danube-1.8B, a 1.8B language model trained on 1T tokens
following the core principles of LLama 2 and Mistral. We leverage and refine
various techniques for pre-training large language models. Although our model
is trained on significantly fewer total tokens compared to reference models of
similar size, it exhibits highly competitive metrics across a multitude of
benchmarks. We additionally release a chat model trained with supervised
fine-tuning followed by direct preference optimization. We make H2O-Danube-1.8B
openly available under Apache 2.0 license further democratizing LLMs to a wider
audience economically.