T-pro 2.0:高效俄罗斯混合推理模型与实验平台
T-pro 2.0: An Efficient Russian Hybrid-Reasoning Model and Playground
December 11, 2025
作者: Dmitrii Stoianov, Danil Taranets, Olga Tsymboi, Ramil Latypov, Almaz Dautov, Vladislav Kruglikov, Nikita Surkov, German Abramov, Pavel Gein, Dmitry Abulkhanov, Mikhail Gashkov, Viktor Zelenkovskiy, Artem Batalov, Aleksandr Medvedev, Anatolii Potapov
cs.AI
摘要
我们推出T-pro 2.0——一个支持混合推理与高效推理的俄语开源大语言模型。该模型支持直接回答与推理轨迹生成,采用西里尔密集分词器并适配EAGLE推测解码流水线以降低延迟。为促进可复现、可扩展的研究,我们在Hugging Face平台开源了模型权重、T-Wix 50万条指令数据集、T-Math数学推理基准以及EAGLE权重。这些资源使用户能够研究俄语推理机制,并扩展或适配模型及推理流水线。公开的网页演示展示了推理与非推理模式,呈现了我们的推理栈在多领域实现的加速效果。T-pro 2.0由此成为一个易用的开放系统,可用于构建和评估高效实用的俄语大语言模型应用。
English
We introduce T-pro 2.0, an open-weight Russian LLM for hybrid reasoning and efficient inference. The model supports direct answering and reasoning-trace generation, using a Cyrillic-dense tokenizer and an adapted EAGLE speculative-decoding pipeline to reduce latency. To enable reproducible and extensible research, we release the model weights, the T-Wix 500k instruction corpus, the T-Math reasoning benchmark, and the EAGLE weights on Hugging Face. These resources allow users to study Russian-language reasoning and to extend or adapt both the model and the inference pipeline. A public web demo exposes reasoning and non-reasoning modes and illustrates the speedups achieved by our inference stack across domains. T-pro 2.0 thus serves as an accessible open system for building and evaluating efficient, practical Russian LLM applications.