这个模型能否也识别狗?从权重中进行零样本模型搜索
Can this Model Also Recognize Dogs? Zero-Shot Model Search from Weights
February 13, 2025
作者: Jonathan Kahana, Or Nathan, Eliahu Horwitz, Yedid Hoshen
cs.AI
摘要
随着公开可用模型数量的增加,很可能为用户所需任务提供了预训练的在线模型。然而,当前的模型搜索方法还比较基础,基本上是在文档中进行基于文本的搜索,因此用户无法找到相关的模型。本文提出了ProbeLog,一种用于检索能识别目标概念(如“狗”)的分类模型的方法,而无需访问模型元数据或训练数据。与先前的探测方法不同,ProbeLog通过观察模型对一组固定输入(探针)的响应来计算每个模型的每个输出维度(logit)的描述符。我们的方法支持基于logit的检索(“查找更多类似的logits”)和零样本、基于文本的检索(“查找所有与狗对应的logits”)。由于基于探测的表示需要通过模型进行多次昂贵的前向传递,我们开发了一种基于协同过滤的方法,将编码存储库的成本降低了3倍。我们证明了ProbeLog在现实世界和细粒度搜索任务中均实现了高检索准确性,并且可扩展到全尺寸存储库。
English
With the increasing numbers of publicly available models, there are probably
pretrained, online models for most tasks users require. However, current model
search methods are rudimentary, essentially a text-based search in the
documentation, thus users cannot find the relevant models. This paper presents
ProbeLog, a method for retrieving classification models that can recognize a
target concept, such as "Dog", without access to model metadata or training
data. Differently from previous probing methods, ProbeLog computes a descriptor
for each output dimension (logit) of each model, by observing its responses on
a fixed set of inputs (probes). Our method supports both logit-based retrieval
("find more logits like this") and zero-shot, text-based retrieval ("find all
logits corresponding to dogs"). As probing-based representations require
multiple costly feedforward passes through the model, we develop a method,
based on collaborative filtering, that reduces the cost of encoding
repositories by 3x. We demonstrate that ProbeLog achieves high retrieval
accuracy, both in real-world and fine-grained search tasks and is scalable to
full-size repositories.Summary
AI-Generated Summary