Orion-MSP:面向表格上下文学习的多尺度稀疏注意力方法
Orion-MSP: Multi-Scale Sparse Attention for Tabular In-Context Learning
November 4, 2025
作者: Mohamed Bouadi, Pratinav Seth, Aditya Tanna, Vinay Kumar Sankarapu
cs.AI
摘要
表格数据仍是现实应用中最主要的数据形式。然而,由于特征类型异构且存在多尺度复杂交互,开发适用于表格数据的有效神经网络模型仍具挑战。近年来表格上下文学习(ICL)技术取得突破,如TabPFN和TabICL无需任务特定微调即可达到与梯度提升树(GBT)相媲美的顶尖性能。但现有架构存在明显局限:(1)单尺度特征处理忽视层次化依赖关系;(2)稠密注意力机制随表格宽度呈二次方复杂度增长;(3)严格顺序的组件处理阻碍迭代表示优化与跨组件通信。为解决这些问题,我们提出Orion-MSP表格ICL架构,其三大创新包括:(1)多尺度处理机制捕捉层次化特征交互;(2)融合窗口化、全局化与随机模式的块稀疏注意力,实现可扩展效率与长程关联;(3)感知器风格记忆模块确保组件间安全的双向信息流。在多样化基准测试中,Orion-MSP在有效扩展至高维表格的同时达到或超越现有顶尖性能,为高效表格上下文学习树立了新标准。模型已开源:https://github.com/Lexsi-Labs/Orion-MSP。
English
Tabular data remain the predominant format for real-world applications. Yet,
developing effective neural models for tabular data remains challenging due to
heterogeneous feature types and complex interactions occurring at multiple
scales. Recent advances in tabular in-context learning (ICL), such as TabPFN
and TabICL, have achieved state-of-the-art performance comparable to
gradient-boosted trees (GBTs) without task-specific fine-tuning. However,
current architectures exhibit key limitations: (1) single-scale feature
processing that overlooks hierarchical dependencies, (2) dense attention with
quadratic scaling in table width, and (3) strictly sequential component
processing that prevents iterative representation refinement and
cross-component communication. To address these challenges, we introduce
Orion-MSP, a tabular ICL architecture featuring three key innovations: (1)
multi-scale processing to capture hierarchical feature interactions; (2)
block-sparse attention combining windowed, global, and random patterns for
scalable efficiency and long-range connectivity; and (3) a Perceiver-style
memory enabling safe bidirectional information flow across components. Across
diverse benchmarks, Orion-MSP matches or surpasses state-of-the-art performance
while scaling effectively to high-dimensional tables, establishing a new
standard for efficient tabular in-context learning. The model is publicly
available at https://github.com/Lexsi-Labs/Orion-MSP .