BOE-XSUM:西班牙法律法令与通知的简明极致摘要
BOE-XSUM: Extreme Summarization in Clear Language of Spanish Legal Decrees and Notifications
September 29, 2025
作者: Andrés Fernández García, Javier de la Rosa, Julio Gonzalo, Roser Morante, Enrique Amigó, Alejandro Benito-Santos, Jorge Carrillo-de-Albornoz, Víctor Fresno, Adrian Ghajari, Guillermo Marco, Laura Plaza, Eva Sánchez Salido
cs.AI
摘要
在信息过载的当下,简洁概括长篇文档的能力日益重要,然而针对西班牙语文档的摘要资源普遍匮乏,尤其是在法律领域。本研究推出了BOE-XSUM数据集,该数据集精心收录了3,648份来自西班牙《国家官方公报》(BOE)的文档,每份文档均配有简明易懂的摘要、原文及其文档类型标签。我们评估了在BOE-XSUM上微调的中等规模大语言模型(LLMs)的表现,并将其与零样本设置下的通用生成模型进行了对比。结果显示,经过微调的模型显著优于非专用模型。特别值得一提的是,表现最佳的模型——BERTIN GPT-J 6B(32位精度)——相较于最佳零样本模型DeepSeek-R1,性能提升了24%(准确率分别为41.6%与33.5%)。
English
The ability to summarize long documents succinctly is increasingly important
in daily life due to information overload, yet there is a notable lack of such
summaries for Spanish documents in general, and in the legal domain in
particular. In this work, we present BOE-XSUM, a curated dataset comprising
3,648 concise, plain-language summaries of documents sourced from Spain's
``Bolet\'{\i}n Oficial del Estado'' (BOE), the State Official Gazette. Each
entry in the dataset includes a short summary, the original text, and its
document type label. We evaluate the performance of medium-sized large language
models (LLMs) fine-tuned on BOE-XSUM, comparing them to general-purpose
generative models in a zero-shot setting. Results show that fine-tuned models
significantly outperform their non-specialized counterparts. Notably, the
best-performing model -- BERTIN GPT-J 6B (32-bit precision) -- achieves a 24\%
performance gain over the top zero-shot model, DeepSeek-R1 (accuracies of
41.6\% vs.\ 33.5\%).