FitMe:深度逼真的3D可塑建模头像
FitMe: Deep Photorealistic 3D Morphable Model Avatars
May 16, 2023
作者: Alexandros Lattas, Stylianos Moschoglou, Stylianos Ploumpis, Baris Gecer, Jiankang Deng, Stefanos Zafeiriou
cs.AI
摘要
本文介绍了FitMe,一种面部反射模型和可微分渲染优化流程,可用于从单个或多个图像中获取高保真可渲染的人体化身。该模型由多模态风格生成器组成,以扩散和镜面反射为基础捕捉面部外观,并包含基于PCA的形状模型。我们采用快速可微分渲染过程,可用于优化流程,同时实现逼真的面部着色。我们的优化过程通过利用基于风格的潜在表示和形状模型的表现力,准确捕捉高细节的面部反射和形状。FitMe在单个“野外”面部图像上实现了最先进的反射获取和身份保留,同时在提供多个与同一身份相关的无约束面部图像时产生令人印象深刻的扫描式结果。与最近的隐式化身重建相比,FitMe仅需一分钟即可生成可重新照明的基于网格和纹理的化身,可供最终用户应用程序使用。
English
In this paper, we introduce FitMe, a facial reflectance model and a
differentiable rendering optimization pipeline, that can be used to acquire
high-fidelity renderable human avatars from single or multiple images. The
model consists of a multi-modal style-based generator, that captures facial
appearance in terms of diffuse and specular reflectance, and a PCA-based shape
model. We employ a fast differentiable rendering process that can be used in an
optimization pipeline, while also achieving photorealistic facial shading. Our
optimization process accurately captures both the facial reflectance and shape
in high-detail, by exploiting the expressivity of the style-based latent
representation and of our shape model. FitMe achieves state-of-the-art
reflectance acquisition and identity preservation on single "in-the-wild"
facial images, while it produces impressive scan-like results, when given
multiple unconstrained facial images pertaining to the same identity. In
contrast with recent implicit avatar reconstructions, FitMe requires only one
minute and produces relightable mesh and texture-based avatars, that can be
used by end-user applications.