ConvSearch-R1:通过强化学习推理增强对话式搜索的查询重构
ConvSearch-R1: Enhancing Query Reformulation for Conversational Search with Reasoning via Reinforcement Learning
May 21, 2025
作者: Changtai Zhu, Siyin Wang, Ruijun Feng, Kai Song, Xipeng Qiu
cs.AI
摘要
对话式搜索系统需要有效处理那些常常包含歧义、省略和指代等上下文依赖的查询。对话式查询重构(CQR)通过将这些查询转化为适合现成检索器的自包含形式来应对这一挑战。然而,现有的CQR方法面临两个关键限制:高度依赖来自人工标注或大型语言模型的高成本外部监督,以及重写模型与下游检索器之间的对齐不足。我们提出了ConvSearch-R1,这是首个完全消除对外部重写监督依赖的自驱动框架,它通过强化学习直接利用检索信号优化重构过程。我们的创新两阶段方法结合了自驱动策略预热,通过检索引导的自蒸馏解决冷启动问题,随后采用检索引导的强化学习,并设计了一种专门针对传统检索指标稀疏性问题的排名激励奖励塑造机制。在TopiOCQA和QReCC数据集上的大量实验表明,ConvSearch-R1显著超越了之前的最先进方法,在具有挑战性的TopiOCQA数据集上实现了超过10%的性能提升,同时仅使用较小的3B参数模型且无需任何外部监督。
English
Conversational search systems require effective handling of context-dependent
queries that often contain ambiguity, omission, and coreference. Conversational
Query Reformulation (CQR) addresses this challenge by transforming these
queries into self-contained forms suitable for off-the-shelf retrievers.
However, existing CQR approaches suffer from two critical constraints: high
dependency on costly external supervision from human annotations or large
language models, and insufficient alignment between the rewriting model and
downstream retrievers. We present ConvSearch-R1, the first self-driven
framework that completely eliminates dependency on external rewrite supervision
by leveraging reinforcement learning to optimize reformulation directly through
retrieval signals. Our novel two-stage approach combines Self-Driven Policy
Warm-Up to address the cold-start problem through retrieval-guided
self-distillation, followed by Retrieval-Guided Reinforcement Learning with a
specially designed rank-incentive reward shaping mechanism that addresses the
sparsity issue in conventional retrieval metrics. Extensive experiments on
TopiOCQA and QReCC datasets demonstrate that ConvSearch-R1 significantly
outperforms previous state-of-the-art methods, achieving over 10% improvement
on the challenging TopiOCQA dataset while using smaller 3B parameter models
without any external supervision.Summary
AI-Generated Summary