智能挖矿时机:基于深度学习的比特币硬件投资回报预测框架
Smart Timing for Mining: A Deep Learning Framework for Bitcoin Hardware ROI Prediction
December 5, 2025
作者: Sithumi Wickramasinghe, Bikramjit Das, Dorien Herremans
cs.AI
摘要
由于市场波动剧烈、技术迭代迅速以及协议驱动的收益周期特性,比特币矿机采购需要把握战略时机。尽管挖矿业已发展为资本密集型产业,但关于何时购置新型专用集成电路(ASIC)矿机的指导策略匮乏,现有计算框架亦未解决这一决策难题。本研究通过将硬件采购构建为时间序列分类任务填补该空白,预测一年内购入ASIC矿机能否获得盈利(投资回报率ROI≥1)、边际收益(0<ROI<1)或亏损(ROI≤0)。我们提出MineROI-Net——一种基于Transformer的开源架构,专用于捕捉挖矿收益的多尺度时序特征。基于2015至2024年间发布的20款ASIC矿机在不同市场行情下的数据测试表明,该模型在准确率(83.7%)和宏观F1分数(83.1%)上均优于基于LSTM和TSLANet的基线模型。其经济实用性突出:对亏损区间的检测精确率达93.6%,盈利区间达98.5%,且能有效避免盈利与亏损情景的误判。这些结果表明MineROI-Net为矿机采购时机决策提供了实用的数据驱动工具,有望降低资本密集型挖矿作业的财务风险。模型可通过以下链接获取:https://github.com/AMAAI-Lab/MineROI-Net。
English
Bitcoin mining hardware acquisition requires strategic timing due to volatile markets, rapid technological obsolescence, and protocol-driven revenue cycles. Despite mining's evolution into a capital-intensive industry, there is little guidance on when to purchase new Application-Specific Integrated Circuit (ASIC) hardware, and no prior computational frameworks address this decision problem. We address this gap by formulating hardware acquisition as a time series classification task, predicting whether purchasing ASIC machines yields profitable (Return on Investment (ROI) >= 1), marginal (0 < ROI < 1), or unprofitable (ROI <= 0) returns within one year. We propose MineROI-Net, an open source Transformer-based architecture designed to capture multi-scale temporal patterns in mining profitability. Evaluated on data from 20 ASIC miners released between 2015 and 2024 across diverse market regimes, MineROI-Net outperforms LSTM-based and TSLANet baselines, achieving 83.7% accuracy and 83.1% macro F1-score. The model demonstrates strong economic relevance, achieving 93.6% precision in detecting unprofitable periods and 98.5% precision for profitable ones, while avoiding misclassification of profitable scenarios as unprofitable and vice versa. These results indicate that MineROI-Net offers a practical, data-driven tool for timing mining hardware acquisitions, potentially reducing financial risk in capital-intensive mining operations. The model is available through: https://github.com/AMAAI-Lab/MineROI-Net.