炼金术士:使用扩散模型对材料属性进行参数化控制
Alchemist: Parametric Control of Material Properties with Diffusion Models
December 5, 2023
作者: Prafull Sharma, Varun Jampani, Yuanzhen Li, Xuhui Jia, Dmitry Lagun, Fredo Durand, William T. Freeman, Mark Matthews
cs.AI
摘要
我们提出了一种方法,用于控制真实图像中物体的材质属性,如粗糙度、金属感、反照率和透明度。我们的方法利用了文本到图像模型的生成先验,该模型以逼真效果著称,利用标量值和指令来改变低级材质属性。针对缺乏具有受控材质属性的数据集的问题,我们生成了一个以物体为中心的合成数据集,其中包含基于物理的材质。通过在这个合成数据集上微调修改后的预训练文本到图像模型,我们能够编辑真实世界图像中的材质属性,同时保留所有其他属性。我们展示了我们的模型在编辑材质的 NeRFs 中的潜在应用。
English
We propose a method to control material attributes of objects like roughness,
metallic, albedo, and transparency in real images. Our method capitalizes on
the generative prior of text-to-image models known for photorealism, employing
a scalar value and instructions to alter low-level material properties.
Addressing the lack of datasets with controlled material attributes, we
generated an object-centric synthetic dataset with physically-based materials.
Fine-tuning a modified pre-trained text-to-image model on this synthetic
dataset enables us to edit material properties in real-world images while
preserving all other attributes. We show the potential application of our model
to material edited NeRFs.