PartNeXt:面向细粒度与层级化三维部件理解的新一代数据集
PartNeXt: A Next-Generation Dataset for Fine-Grained and Hierarchical 3D Part Understanding
October 23, 2025
作者: Penghao Wang, Yiyang He, Xin Lv, Yukai Zhou, Lan Xu, Jingyi Yu, Jiayuan Gu
cs.AI
摘要
在构件层面理解物体是推动计算机视觉、图形学和机器人技术发展的关键。尽管PartNet等数据集推动了三维部件理解的发展,但其依赖无纹理几何模型和专业标注的特点限制了可扩展性和实用性。我们推出新一代数据集PartNeXt,通过5大类别下超过23,000个高质量纹理三维模型及其细粒度层次化部件标注,有效解决了上述局限。我们在两项任务上对PartNeXt进行基准测试:(1)类别无关部件分割任务中,现有前沿方法(如PartField、SAMPart3D)在细粒度和叶级部件识别上表现不佳;(2)面向三维大语言模型的新基准——以部件为中心的三维问答任务,揭示了开放词汇部件定位能力的显著不足。此外,基于PartNeXt训练的Point-SAM模型相比PartNet实现显著性能提升,印证了该数据集在质量与多样性上的优势。通过融合可扩展标注、纹理感知标签和多任务评估,PartNeXt为结构化三维理解研究开辟了新路径。
English
Understanding objects at the level of their constituent parts is fundamental
to advancing computer vision, graphics, and robotics. While datasets like
PartNet have driven progress in 3D part understanding, their reliance on
untextured geometries and expert-dependent annotation limits scalability and
usability. We introduce PartNeXt, a next-generation dataset addressing these
gaps with over 23,000 high-quality, textured 3D models annotated with
fine-grained, hierarchical part labels across 50 categories. We benchmark
PartNeXt on two tasks: (1) class-agnostic part segmentation, where
state-of-the-art methods (e.g., PartField, SAMPart3D) struggle with
fine-grained and leaf-level parts, and (2) 3D part-centric question answering,
a new benchmark for 3D-LLMs that reveals significant gaps in open-vocabulary
part grounding. Additionally, training Point-SAM on PartNeXt yields substantial
gains over PartNet, underscoring the dataset's superior quality and diversity.
By combining scalable annotation, texture-aware labels, and multi-task
evaluation, PartNeXt opens new avenues for research in structured 3D
understanding.