ATT3D:摊销文本到三维物体合成
ATT3D: Amortized Text-to-3D Object Synthesis
June 6, 2023
作者: Jonathan Lorraine, Kevin Xie, Xiaohui Zeng, Chen-Hsuan Lin, Towaki Takikawa, Nicholas Sharp, Tsung-Yi Lin, Ming-Yu Liu, Sanja Fidler, James Lucas
cs.AI
摘要
文本到三维建模通过将生成式文本到图像模型与图像到三维的方法(如神经辐射场)相结合,取得了令人振奋的进展。DreamFusion 最近取得了高质量的结果,但需要通过冗长的逐提示优化来创建三维对象。为解决这一问题,我们通过在统一模型上同时训练多个提示,而不是分开训练,来分期偿还文本提示的优化。通过这种方式,我们在整个提示集合上共享计算,在比逐提示优化更短的时间内进行训练。我们的框架 - 分期偿还文本到三维(ATT3D)- 可以实现提示之间的知识共享,以便泛化到未见过的设置,并在文本之间实现平滑插值,用于新颖资产和简单动画。
English
Text-to-3D modelling has seen exciting progress by combining generative
text-to-image models with image-to-3D methods like Neural Radiance Fields.
DreamFusion recently achieved high-quality results but requires a lengthy,
per-prompt optimization to create 3D objects. To address this, we amortize
optimization over text prompts by training on many prompts simultaneously with
a unified model, instead of separately. With this, we share computation across
a prompt set, training in less time than per-prompt optimization. Our framework
- Amortized text-to-3D (ATT3D) - enables knowledge-sharing between prompts to
generalize to unseen setups and smooth interpolations between text for novel
assets and simple animations.