Hackphyr:用于网络安全环境的本地微调LLM代理
Hackphyr: A Local Fine-Tuned LLM Agent for Network Security Environments
September 17, 2024
作者: Maria Rigaki, Carlos Catania, Sebastian Garcia
cs.AI
摘要
大型语言模型(LLMs)展现出在各个领域的显著潜力,包括网络安全。使用商业云端的LLMs可能存在隐私问题、成本和网络连接限制,这是不理想的。本文介绍了Hackphyr,这是一个在网络安全环境中作为红队代理使用的本地微调LLM。我们微调的70亿参数模型可以在单个GPU卡上运行,并且达到了与更大更强大的商业模型(如GPT-4)相媲美的性能。Hackphyr明显优于其他模型,包括GPT-3.5-turbo和基线模型,如Q学习代理在复杂、以前未见的场景中。为了实现这一性能,我们生成了一个新的任务特定的网络安全数据集,以增强基础模型的能力。最后,我们对代理的行为进行了全面分析,从而深入了解这些代理的规划能力和潜在缺陷,有助于更广泛地理解基于LLM的代理在网络安全环境中的应用。
English
Large Language Models (LLMs) have shown remarkable potential across various
domains, including cybersecurity. Using commercial cloud-based LLMs may be
undesirable due to privacy concerns, costs, and network connectivity
constraints. In this paper, we present Hackphyr, a locally fine-tuned LLM to be
used as a red-team agent within network security environments. Our fine-tuned 7
billion parameter model can run on a single GPU card and achieves performance
comparable with much larger and more powerful commercial models such as GPT-4.
Hackphyr clearly outperforms other models, including GPT-3.5-turbo, and
baselines, such as Q-learning agents in complex, previously unseen scenarios.
To achieve this performance, we generated a new task-specific cybersecurity
dataset to enhance the base model's capabilities. Finally, we conducted a
comprehensive analysis of the agents' behaviors that provides insights into the
planning abilities and potential shortcomings of such agents, contributing to
the broader understanding of LLM-based agents in cybersecurity contextsSummary
AI-Generated Summary