ChatPaper.aiChatPaper

IMA++:ISIC档案多标注者皮肤镜图像病灶分割数据集

IMA++: ISIC Archive Multi-Annotator Dermoscopic Skin Lesion Segmentation Dataset

December 25, 2025
作者: Kumar Abhishek, Jeremy Kawahara, Ghassan Hamarneh
cs.AI

摘要

多标注者医学图像分割是重要的研究课题,但需要耗费高昂成本构建标注数据集。皮肤镜病灶成像技术使得人类专家和人工智能系统能够观察到常规临床照片无法辨别的形态学结构。然而目前尚缺乏包含标注者标签的大规模公开多标注者皮肤病灶分割数据集。我们推出ISIC MultiAnnot++——基于ISIC档案图像的大型公开多标注者皮肤病灶分割数据集。该最终数据集包含覆盖14,967张皮肤镜图像的17,684个分割掩码,其中2,394张图像每幅包含2-5个分割标注,使其成为当前最大的公开SLS数据集。此外,数据集还包含关于分割的元数据(如标注者技能水平与分割工具),支持开展标注者特异性偏好建模、标注者元数据分析等研究。我们对该数据集特征、整理的数据分区及共识分割掩码进行了系统性分析。
English
Multi-annotator medical image segmentation is an important research problem, but requires annotated datasets that are expensive to collect. Dermoscopic skin lesion imaging allows human experts and AI systems to observe morphological structures otherwise not discernable from regular clinical photographs. However, currently there are no large-scale publicly available multi-annotator skin lesion segmentation (SLS) datasets with annotator-labels for dermoscopic skin lesion imaging. We introduce ISIC MultiAnnot++, a large public multi-annotator skin lesion segmentation dataset for images from the ISIC Archive. The final dataset contains 17,684 segmentation masks spanning 14,967 dermoscopic images, where 2,394 dermoscopic images have 2-5 segmentations per image, making it the largest publicly available SLS dataset. Further, metadata about the segmentation, including the annotators' skill level and segmentation tool, is included, enabling research on topics such as annotator-specific preference modeling for segmentation and annotator metadata analysis. We provide an analysis on the characteristics of this dataset, curated data partitions, and consensus segmentation masks.
PDF12January 7, 2026