优化分解以实现最优声明验证
Optimizing Decomposition for Optimal Claim Verification
March 19, 2025
作者: Yining Lu, Noah Ziems, Hy Dang, Meng Jiang
cs.AI
摘要
当前关于评估长篇文本事实性的“分解-验证”范式研究,通常将分解与验证过程孤立对待,忽视了二者间的相互作用及潜在的不匹配问题。我们发现,现有的分解策略,多为手工设计的示例,在原子性(一种量化信息密度的新指标)方面与下游验证器未能良好对齐,导致验证效果欠佳。为此,我们将寻找最优分解策略以实现最佳验证的问题,建模为一个双层优化问题。针对这一强NP难问题,我们提出了动态分解方法,这是一个强化学习框架,它利用验证器的反馈来学习一种策略,动态地将声明分解为验证器偏好的原子性水平。实验结果表明,动态分解策略优于现有分解方法,在不同验证器、数据集及输入声明原子性的条件下,平均提升了0.07的验证置信度和0.12的准确率(基于0-1评分标准)。
English
Current research on the Decompose-Then-Verify paradigm for
evaluating the factuality of long-form text typically treats decomposition and
verification in isolation, overlooking their interactions and potential
misalignment. We find that existing decomposition policies, typically
hand-crafted demonstrations, do not align well with downstream verifiers in
terms of atomicity -- a novel metric quantifying information density -- leading
to suboptimal verification results. We formulate finding the optimal
decomposition policy for optimal verification as a bilevel optimization
problem. To approximate a solution for this strongly NP-hard problem, we
propose dynamic decomposition, a reinforcement learning framework that
leverages verifier feedback to learn a policy for dynamically decomposing
claims to verifier-preferred atomicity. Experimental results show that dynamic
decomposition outperforms existing decomposition policies, improving
verification confidence by 0.07 and accuracy by 0.12 (on a 0-1 scale) on
average across varying verifiers, datasets, and atomcities of input claims.Summary
AI-Generated Summary