四十二:基于同行排序共识的群体推理
Fortytwo: Swarm Inference with Peer-Ranked Consensus
October 27, 2025
作者: Vladyslav Larin, Ihor Naumenko, Aleksei Ivashov, Ivan Nikitin, Alexander Firsov
cs.AI
摘要
随着集中式AI触及算力瓶颈且大规模训练带来的边际效益递减,满足需求需要一个在容量与能力上均可横向扩展的推理层。本文提出Fortytwo协议——一种基于群体智能原理与分布式两两排序共识的新型协议,可在AI推理中实现卓越性能。我们的方法通过"群体推理"重构AI节点间的协作机制:利用异构模型间的同行评分、声誉加权共识来筛选最优响应。采用自定义布拉德利-特里模型进行两两排序的结果表明,群体推理显著优于多数投票法,在GPQA Diamond基准上达到85.90%准确率,相较同等模型集下多数投票法的68.69%提升17.21个百分点(相对提升约25.1%)。该协议引入链上声誉机制,使节点影响力随实际准确率动态调整,形成优胜劣汰的共识体系以过滤低质量或恶意参与者。为抵御女巫攻击,Fortytwo在共识中采用能力证明机制:节点需成功完成校准/测试请求并质押声誉值才能进入排序环节,在保持开放性的同时使多身份攻击无利可图。在GPQA Diamond、LiveCodeBench和AIME等六项挑战性基准测试中,我们的方案展现出更高准确率及对对抗性/噪声自由提示的强大鲁棒性(例如提示注入攻击下的性能衰减仅0.12%,而单体单模型基线为6.20%),同时保持实际可部署性。这些成果为去中心化AI系统奠定基础,通过集体智能实现高质量推理的民主化接入,且无需牺牲可靠性或安全性。
English
As centralized AI hits compute ceilings and diminishing returns from
ever-larger training runs, meeting demand requires an inference layer that
scales horizontally in both capacity and capability. We present Fortytwo, a
novel protocol that leverages swarm intelligence principles and distributed
pairwise ranking consensus to achieve superior performance in AI inference. Our
approach reimagines collaboration among AI nodes using swarm inference: a
peer-ranked, reputation-weighted consensus across heterogeneous models that
surfaces the highest-quality responses. Using pairwise ranking with a custom
Bradley-Terry-style aggregation model, we demonstrate that swarm inference
substantially outperforms majority voting, achieving 85.90% on GPQA Diamond
versus 68.69% for majority voting with the same model set - an improvement of
+17.21 percentage points (approximately +25.1% relative). The protocol
incorporates on-chain reputation so node influence adapts to demonstrated
accuracy over time, yielding a meritocratic consensus that filters low-quality
or malicious participants. To resist Sybil attacks, Fortytwo employs
proof-of-capability in its consensus: nodes must successfully complete
calibration/test requests and stake reputation to enter ranking rounds, making
multi-identity attacks economically unattractive while preserving openness.
Across six challenging benchmarks, including GPQA Diamond, LiveCodeBench, and
AIME, our evaluation indicates higher accuracy and strong resilience to
adversarial and noisy free-form prompting (e.g., prompt-injection degradation
of only 0.12% versus 6.20% for a monolithic single-model baseline), while
retaining practical deployability. Together, these results establish a
foundation for decentralized AI systems - democratizing access to high-quality
inference through collective intelligence without sacrificing reliability or
security.