ChatPaper.aiChatPaper

德纳里奥项目:面向科学发现的深度知识人工智能体

The Denario project: Deep knowledge AI agents for scientific discovery

October 30, 2025
作者: Francisco Villaescusa-Navarro, Boris Bolliet, Pablo Villanueva-Domingo, Adrian E. Bayer, Aidan Acquah, Chetana Amancharla, Almog Barzilay-Siegal, Pablo Bermejo, Camille Bilodeau, Pablo Cárdenas Ramírez, Miles Cranmer, Urbano L. França, ChangHoon Hahn, Yan-Fei Jiang, Raul Jimenez, Jun-Young Lee, Antonio Lerario, Osman Mamun, Thomas Meier, Anupam A. Ojha, Pavlos Protopapas, Shimanto Roy, David N. Spergel, Pedro Tarancón-Álvarez, Ujjwal Tiwari, Matteo Viel, Digvijay Wadekar, Chi Wang, Bonny Y. Wang, Licong Xu, Yossi Yovel, Shuwen Yue, Wen-Han Zhou, Qiyao Zhu, Jiajun Zou, Íñigo Zubeldia
cs.AI

摘要

我们推出Denario——一款作为科研助手设计的AI多智能体系统。该系统能够执行多种任务,包括生成创意、文献调研、制定研究计划、编写执行代码、绘制图表以及起草与评审科学论文。Denario采用模块化架构,既可处理生成想法等特定任务,也能借助Cmbagent深度研究后端完成端到端的科学分析。本文详细阐述了Denario及其模块架构,并通过展示其在天体物理学、生物学、生物物理学、生物医学信息学、化学、材料科学、数学物理、医学、神经科学和行星科学等多学科领域生成的AI论文来彰显其能力。该系统尤其擅长跨学科思想融合,我们特别呈现了一篇将量子物理学与机器学习方法应用于天体物理数据的论文作为例证。我们报告了领域专家对这些论文的评估结果,包括量化评分和审稿式反馈,进而剖析当前系统的优势、不足与局限。最后,我们探讨了AI驱动科研的伦理影响,并反思该技术与科学哲学的内在关联。代码已公开发布于https://github.com/AstroPilot-AI/Denario,用户可通过https://huggingface.co/spaces/astropilot-ai/Denario 在线体验演示版,完整应用即将部署至云端。
English
We present Denario, an AI multi-agent system designed to serve as a scientific research assistant. Denario can perform many different tasks, such as generating ideas, checking the literature, developing research plans, writing and executing code, making plots, and drafting and reviewing a scientific paper. The system has a modular architecture, allowing it to handle specific tasks, such as generating an idea, or carrying out end-to-end scientific analysis using Cmbagent as a deep-research backend. In this work, we describe in detail Denario and its modules, and illustrate its capabilities by presenting multiple AI-generated papers generated by it in many different scientific disciplines such as astrophysics, biology, biophysics, biomedical informatics, chemistry, material science, mathematical physics, medicine, neuroscience and planetary science. Denario also excels at combining ideas from different disciplines, and we illustrate this by showing a paper that applies methods from quantum physics and machine learning to astrophysical data. We report the evaluations performed on these papers by domain experts, who provided both numerical scores and review-like feedback. We then highlight the strengths, weaknesses, and limitations of the current system. Finally, we discuss the ethical implications of AI-driven research and reflect on how such technology relates to the philosophy of science. We publicly release the code at https://github.com/AstroPilot-AI/Denario. A Denario demo can also be run directly on the web at https://huggingface.co/spaces/astropilot-ai/Denario, and the full app will be deployed on the cloud.
PDF62December 2, 2025