ChatPaper.aiChatPaper

DEXOP:一种用于机器人传递人类灵巧操作能力的装置

DEXOP: A Device for Robotic Transfer of Dexterous Human Manipulation

September 4, 2025
作者: Hao-Shu Fang, Branden Romero, Yichen Xie, Arthur Hu, Bo-Ruei Huang, Juan Alvarez, Matthew Kim, Gabriel Margolis, Kavya Anbarasu, Masayoshi Tomizuka, Edward Adelson, Pulkit Agrawal
cs.AI

摘要

我们提出了perioperation这一机器人数据采集范式,它通过传感和记录人类操作行为,最大限度地提升数据向真实机器人的可迁移性。我们在DEXOP中实现了这一范式,DEXOP是一种被动式手部外骨骼,旨在增强人类在自然环境中为多种灵巧操作任务收集丰富感官(视觉+触觉)数据的能力。DEXOP将人类手指与机器人手指机械连接,通过本体感觉为用户提供直接接触反馈,并将人手姿态镜像至被动机器人手,以最大化演示技能向机器人的转移。与远程操作相比,力反馈和姿态镜像使任务演示对人类而言更为自然,从而提高了速度和准确性。我们在一系列涉及密集接触的灵巧任务中评估了DEXOP,证明了其大规模收集高质量演示数据的能力。利用DEXOP数据学习到的策略,在单位数据收集时间内显著提升了任务表现,使DEXOP成为推动机器人灵巧性发展的有力工具。我们的项目页面位于https://dex-op.github.io。
English
We introduce perioperation, a paradigm for robotic data collection that sensorizes and records human manipulation while maximizing the transferability of the data to real robots. We implement this paradigm in DEXOP, a passive hand exoskeleton designed to maximize human ability to collect rich sensory (vision + tactile) data for diverse dexterous manipulation tasks in natural environments. DEXOP mechanically connects human fingers to robot fingers, providing users with direct contact feedback (via proprioception) and mirrors the human hand pose to the passive robot hand to maximize the transfer of demonstrated skills to the robot. The force feedback and pose mirroring make task demonstrations more natural for humans compared to teleoperation, increasing both speed and accuracy. We evaluate DEXOP across a range of dexterous, contact-rich tasks, demonstrating its ability to collect high-quality demonstration data at scale. Policies learned with DEXOP data significantly improve task performance per unit time of data collection compared to teleoperation, making DEXOP a powerful tool for advancing robot dexterity. Our project page is at https://dex-op.github.io.
PDF22September 23, 2025