全方位足球理解的多智能体系统
Multi-Agent System for Comprehensive Soccer Understanding
May 6, 2025
作者: Jiayuan Rao, Zifeng Li, Haoning Wu, Ya Zhang, Yanfeng Wang, Weidi Xie
cs.AI
摘要
近期,AI驱动的足球理解领域取得了显著进展,然而现有研究大多局限于孤立或狭窄的任务。为填补这一空白,我们提出了一套全面的足球理解框架。具体而言,本文做出了以下贡献:(i) 我们构建了SoccerWiki,首个大规模多模态足球知识库,整合了关于球员、球队、裁判及场地的丰富领域知识,以支持知识驱动的推理;(ii) 我们推出了SoccerBench,最大且最全面的足球专用基准测试,包含约10,000个标准化多模态(文本、图像、视频)多选题对,覆盖13项不同的理解任务,通过自动化流程与人工验证精心筛选;(iii) 我们引入了SoccerAgent,一种新颖的多智能体系统,通过协作推理分解复杂足球问题,利用SoccerWiki的领域专业知识,实现了稳健的性能;(iv) 广泛的评估与消融实验,在SoccerBench上对最先进的多模态大语言模型进行基准测试,凸显了我们所提出智能体系统的优越性。所有数据与代码均已公开,访问地址为:https://jyrao.github.io/SoccerAgent/。
English
Recent advancements in AI-driven soccer understanding have demonstrated rapid
progress, yet existing research predominantly focuses on isolated or narrow
tasks. To bridge this gap, we propose a comprehensive framework for holistic
soccer understanding. Specifically, we make the following contributions in this
paper: (i) we construct SoccerWiki, the first large-scale multimodal soccer
knowledge base, integrating rich domain knowledge about players, teams,
referees, and venues to enable knowledge-driven reasoning; (ii) we present
SoccerBench, the largest and most comprehensive soccer-specific benchmark,
featuring around 10K standardized multimodal (text, image, video) multi-choice
QA pairs across 13 distinct understanding tasks, curated through automated
pipelines and manual verification; (iii) we introduce SoccerAgent, a novel
multi-agent system that decomposes complex soccer questions via collaborative
reasoning, leveraging domain expertise from SoccerWiki and achieving robust
performance; (iv) extensive evaluations and ablations that benchmark
state-of-the-art MLLMs on SoccerBench, highlighting the superiority of our
proposed agentic system. All data and code are publicly available at:
https://jyrao.github.io/SoccerAgent/.Summary
AI-Generated Summary