可执行知识图谱在AI研究复现中的应用
Executable Knowledge Graphs for Replicating AI Research
October 20, 2025
作者: Yujie Luo, Zhuoyun Yu, Xuehai Wang, Yuqi Zhu, Ningyu Zhang, Lanning Wei, Lun Du, Da Zheng, Huajun Chen
cs.AI
摘要
复制人工智能研究对于大型语言模型(LLM)代理而言是一项关键却充满挑战的任务。现有方法往往难以生成可执行代码,主要归因于背景知识的不足以及检索增强生成(RAG)方法的局限性,后者未能捕捉到参考文献中隐含的技术细节。此外,先前的方法常常忽视了宝贵的实现层面代码信号,并缺乏支持多粒度检索与重用的结构化知识表示。为应对这些挑战,我们提出了可执行知识图谱(xKG),这是一个模块化且可插拔的知识库,能自动整合从科学文献中提取的技术见解、代码片段及领域特定知识。当xKG被集成到采用两种不同LLM的三种代理框架中时,在PaperBench上展现了显著的性能提升(使用o3-mini时提升10.9%),证明了其作为自动化AI研究复制的通用且可扩展解决方案的有效性。代码将在https://github.com/zjunlp/xKG 发布。
English
Replicating AI research is a crucial yet challenging task for large language
model (LLM) agents. Existing approaches often struggle to generate executable
code, primarily due to insufficient background knowledge and the limitations of
retrieval-augmented generation (RAG) methods, which fail to capture latent
technical details hidden in referenced papers. Furthermore, previous approaches
tend to overlook valuable implementation-level code signals and lack structured
knowledge representations that support multi-granular retrieval and reuse. To
overcome these challenges, we propose Executable Knowledge Graphs (xKG), a
modular and pluggable knowledge base that automatically integrates technical
insights, code snippets, and domain-specific knowledge extracted from
scientific literature. When integrated into three agent frameworks with two
different LLMs, xKG shows substantial performance gains (10.9% with o3-mini) on
PaperBench, demonstrating its effectiveness as a general and extensible
solution for automated AI research replication. Code will released at
https://github.com/zjunlp/xKG.