Lumos-1:从统一模型视角看自回归视频生成
Lumos-1: On Autoregressive Video Generation from a Unified Model Perspective
July 11, 2025
作者: Hangjie Yuan, Weihua Chen, Jun Cen, Hu Yu, Jingyun Liang, Shuning Chang, Zhihui Lin, Tao Feng, Pengwei Liu, Jiazheng Xing, Hao Luo, Jiasheng Tang, Fan Wang, Yi Yang
cs.AI
摘要
自回归大语言模型(LLMs)已统一了广泛的语言任务,激发了自回归视频生成的初步探索。现有的自回归视频生成器要么偏离了标准LLM架构,依赖于庞大的外部文本编码器,要么因下一令牌解码而产生难以承受的延迟。本文中,我们介绍了Lumos-1,一种保留LLM架构且仅需最小架构修改的自回归视频生成器。为了在LLMs中注入时空相关性,我们验证了引入3D RoPE的有效性,并诊断了其频率谱范围的不平衡问题。因此,我们提出了MM-RoPE,一种既保留原始文本RoPE,又为多模态时空数据建模提供全面频率谱及缩放3D位置的RoPE方案。此外,Lumos-1采用了一种遵循帧内双向性与帧间时序因果性的令牌依赖策略。基于此策略,我们识别出由空间信息冗余导致的帧间损失不平衡问题,并通过提出自回归离散扩散强制(AR-DF)加以解决。AR-DF在训练时引入时间管掩码,并配合推理时的掩码策略以避免质量下降。通过采用内存高效的训练技术,我们仅用48块GPU对Lumos-1进行了预训练,在GenEval上达到了与EMU3相当的性能,在VBench-I2V上媲美COSMOS-Video2World,在VBench-T2V上比肩OpenSoraPlan。代码与模型已发布于https://github.com/alibaba-damo-academy/Lumos。
English
Autoregressive large language models (LLMs) have unified a vast range of
language tasks, inspiring preliminary efforts in autoregressive video
generation. Existing autoregressive video generators either diverge from
standard LLM architectures, depend on bulky external text encoders, or incur
prohibitive latency due to next-token decoding. In this paper, we introduce
Lumos-1, an autoregressive video generator that retains the LLM architecture
with minimal architectural modifications. To inject spatiotemporal correlations
in LLMs, we identify the efficacy of incorporating 3D RoPE and diagnose its
imbalanced frequency spectrum ranges. Therefore, we propose MM-RoPE, a RoPE
scheme that preserves the original textual RoPE while providing comprehensive
frequency spectra and scaled 3D positions for modeling multimodal
spatiotemporal data. Moreover, Lumos-1 resorts to a token dependency strategy
that obeys intra-frame bidirectionality and inter-frame temporal causality.
Based on this dependency strategy, we identify the issue of frame-wise loss
imbalance caused by spatial information redundancy and solve it by proposing
Autoregressive Discrete Diffusion Forcing (AR-DF). AR-DF introduces temporal
tube masking during training with a compatible inference-time masking policy to
avoid quality degradation. By using memory-efficient training techniques, we
pre-train Lumos-1 on only 48 GPUs, achieving performance comparable to EMU3 on
GenEval, COSMOS-Video2World on VBench-I2V, and OpenSoraPlan on VBench-T2V. Code
and models are available at https://github.com/alibaba-damo-academy/Lumos.