IAUNet:实例感知U-Net
IAUNet: Instance-Aware U-Net
August 3, 2025
作者: Yaroslav Prytula, Illia Tsiporenko, Ali Zeynalli, Dmytro Fishman
cs.AI
摘要
实例分割在生物医学成像中至关重要,它能精确区分如细胞等常重叠且大小各异的单个对象。近期,基于查询的方法(即通过对象查询引导分割)已展现出卓越性能。尽管U-Net一直是医学图像分割的首选架构,其在基于查询方法中的潜力却尚未充分挖掘。本研究中,我们提出了IAUNet,一种创新的基于查询的U-Net架构。其核心设计采用完整的U-Net架构,并辅以新型轻量级卷积像素解码器,从而提升模型效率并减少参数数量。此外,我们提出了一种Transformer解码器,用于在多尺度上精炼对象特定特征。最后,我们发布了2025年Revvity全细胞分割数据集,这一独特资源包含明场图像中重叠细胞质的详细标注,为生物医学实例分割设立了新基准。在多个公开数据集及我们自有数据上的实验表明,IAUNet在多数全卷积、基于Transformer及查询的模型以及专门针对细胞分割的模型中表现优异,为细胞实例分割任务奠定了坚实基础。代码已发布于https://github.com/SlavkoPrytula/IAUNet。
English
Instance segmentation is critical in biomedical imaging to accurately
distinguish individual objects like cells, which often overlap and vary in
size. Recent query-based methods, where object queries guide segmentation, have
shown strong performance. While U-Net has been a go-to architecture in medical
image segmentation, its potential in query-based approaches remains largely
unexplored. In this work, we present IAUNet, a novel query-based U-Net
architecture. The core design features a full U-Net architecture, enhanced by a
novel lightweight convolutional Pixel decoder, making the model more efficient
and reducing the number of parameters. Additionally, we propose a Transformer
decoder that refines object-specific features across multiple scales. Finally,
we introduce the 2025 Revvity Full Cell Segmentation Dataset, a unique resource
with detailed annotations of overlapping cell cytoplasm in brightfield images,
setting a new benchmark for biomedical instance segmentation. Experiments on
multiple public datasets and our own show that IAUNet outperforms most
state-of-the-art fully convolutional, transformer-based, and query-based models
and cell segmentation-specific models, setting a strong baseline for cell
instance segmentation tasks. Code is available at
https://github.com/SlavkoPrytula/IAUNet