ObjFiller-3D:基于视频扩散模型的多视角3D一致性修复
ObjFiller-3D: Consistent Multi-view 3D Inpainting via Video Diffusion Models
August 25, 2025
作者: Haitang Feng, Jie Liu, Jie Tang, Gangshan Wu, Beiqi Chen, Jianhuang Lai, Guangcong Wang
cs.AI
摘要
三维修复通常依赖于多视角的二维图像修复,然而不同修复视图间固有的不一致性可能导致纹理模糊、空间不连续以及引人注目的视觉伪影。这些不一致性在追求精确且逼真的三维物体补全时构成了重大挑战,尤其是在要求高保真度和结构一致性的应用场景中。为克服这些局限,我们提出了ObjFiller-3D,一种专为高质量、一致性三维物体补全与编辑设计的新方法。不同于传统的二维图像修复模型,我们的方法巧妙利用了精选的先进视频编辑模型来填补三维物体的掩蔽区域。我们分析了三维与视频之间的表示差异,并提出了一种将视频修复模型适配于三维场景修复的策略。此外,我们引入了一种基于参考的三维修复方法,以进一步提升重建质量。在多个数据集上的实验表明,与先前方法相比,ObjFiller-3D能够生成更为忠实且精细的重建结果(PSNR为26.6,优于NeRFiller的15.9;LPIPS为0.19,优于Instant3dit的0.25)。更重要的是,它展现了在实际三维编辑应用中部署的强大潜力。项目页面:https://objfiller3d.github.io/ 代码:https://github.com/objfiller3d/ObjFiller-3D。
English
3D inpainting often relies on multi-view 2D image inpainting, where the
inherent inconsistencies across different inpainted views can result in blurred
textures, spatial discontinuities, and distracting visual artifacts. These
inconsistencies pose significant challenges when striving for accurate and
realistic 3D object completion, particularly in applications that demand high
fidelity and structural coherence. To overcome these limitations, we propose
ObjFiller-3D, a novel method designed for the completion and editing of
high-quality and consistent 3D objects. Instead of employing a conventional 2D
image inpainting model, our approach leverages a curated selection of
state-of-the-art video editing model to fill in the masked regions of 3D
objects. We analyze the representation gap between 3D and videos, and propose
an adaptation of a video inpainting model for 3D scene inpainting. In addition,
we introduce a reference-based 3D inpainting method to further enhance the
quality of reconstruction. Experiments across diverse datasets show that
compared to previous methods, ObjFiller-3D produces more faithful and
fine-grained reconstructions (PSNR of 26.6 vs. NeRFiller (15.9) and LPIPS of
0.19 vs. Instant3dit (0.25)). Moreover, it demonstrates strong potential for
practical deployment in real-world 3D editing applications. Project page:
https://objfiller3d.github.io/ Code:
https://github.com/objfiller3d/ObjFiller-3D .