TexDreamer:朝向零样本高保真度3D人体纹理生成
TexDreamer: Towards Zero-Shot High-Fidelity 3D Human Texture Generation
March 19, 2024
作者: Yufei Liu, Junwei Zhu, Junshu Tang, Shijie Zhang, Jiangning Zhang, Weijian Cao, Chengjie Wang, Yunsheng Wu, Dongjin Huang
cs.AI
摘要
利用语义UV映射为3D人体进行纹理处理仍然是一个挑战,这是因为获取合理展开的UV的困难。尽管最近在使用大型文本到图像(T2I)模型监督多视角渲染方面取得了进展,但在生成速度、文本一致性和纹理质量方面仍然存在问题,导致现有数据集中存在数据稀缺。我们提出了TexDreamer,这是第一个零样本多模态高保真度3D人体纹理生成模型。利用高效的纹理适应微调策略,我们将大型T2I模型调整到语义UV结构,同时保留其原始的泛化能力。通过利用一种新颖的特征转换器模块,训练好的模型能够在几秒内从文本或图像生成高保真度的3D人体纹理。此外,我们介绍了ArTicuLated humAn textureS(ATLAS),这是最大的高分辨率(1024 X 1024)3D人体纹理数据集,包含了50k个带有文本描述的高保真度纹理。
English
Texturing 3D humans with semantic UV maps remains a challenge due to the
difficulty of acquiring reasonably unfolded UV. Despite recent text-to-3D
advancements in supervising multi-view renderings using large text-to-image
(T2I) models, issues persist with generation speed, text consistency, and
texture quality, resulting in data scarcity among existing datasets. We present
TexDreamer, the first zero-shot multimodal high-fidelity 3D human texture
generation model. Utilizing an efficient texture adaptation finetuning
strategy, we adapt large T2I model to a semantic UV structure while preserving
its original generalization capability. Leveraging a novel feature translator
module, the trained model is capable of generating high-fidelity 3D human
textures from either text or image within seconds. Furthermore, we introduce
ArTicuLated humAn textureS (ATLAS), the largest high-resolution (1024 X 1024)
3D human texture dataset which contains 50k high-fidelity textures with text
descriptions.Summary
AI-Generated Summary