Jina-VLM:轻量化多语言视觉语言模型
Jina-VLM: Small Multilingual Vision Language Model
December 3, 2025
作者: Andreas Koukounas, Georgios Mastrapas, Florian Hönicke, Sedigheh Eslami, Guillaume Roncari, Scott Martens, Han Xiao
cs.AI
摘要
我们推出Jina-VLM——一个24亿参数的视觉语言模型,在20亿参数规模的开源多语言视觉问答模型中达到顶尖水平。该模型通过注意力池化连接器将SigLIP2视觉编码器与Qwen3语言主干网络相结合,能够以令牌高效的方式处理任意分辨率的图像。在标准视觉问答基准和多语言评估中,Jina-VLM在保持竞争力单文本性能的同时,综合表现优于同类模型。
English
We present Jina-VLM, a 2.4B parameter vision-language model that achieves state-of-the-art multilingual visual question answering among open 2B-scale VLMs. The model couples a SigLIP2 vision encoder with a Qwen3 language backbone through an attention-pooling connector that enables token-efficient processing of arbitrary-resolution images. Across standard VQA benchmarks and multilingual evaluations, Jina-VLM outperforms comparable models while preserving competitive text-only performance.