多模态大语言模型的视觉表征对齐
Visual Representation Alignment for Multimodal Large Language Models
September 9, 2025
作者: Heeji Yoon, Jaewoo Jung, Junwan Kim, Hyungyu Choi, Heeseong Shin, Sangbeom Lim, Honggyu An, Chaehyun Kim, Jisang Han, Donghyun Kim, Chanho Eom, Sunghwan Hong, Seungryong Kim
cs.AI
摘要
通过视觉指令调优训练的多模态大语言模型(MLLMs)已在多种任务中展现出强劲性能,但在以视觉为中心的任务如物体计数或空间推理方面仍显不足。我们将此差距归因于当前主流的纯文本监督范式,该范式仅为视觉路径提供间接指导,常导致MLLMs在训练过程中忽略细粒度的视觉细节。本文提出视觉表示对齐(VIRAL),一种简洁而有效的正则化策略,旨在将MLLMs的内部视觉表示与预训练视觉基础模型(VFMs)的表示对齐。通过显式实施这种对齐,VIRAL不仅使模型能够保留来自输入视觉编码器的关键视觉细节,还能补充VFMs提供的额外视觉知识,从而增强其处理复杂视觉输入时的推理能力。我们的实验表明,在广泛采用的多模态基准测试中,所有任务均实现了持续改进。此外,我们进行了全面的消融研究,以验证框架设计的关键选择。我们相信,这一简单发现为在MLLMs训练中有效整合视觉信息开辟了重要方向。
English
Multimodal large language models (MLLMs) trained with visual instruction
tuning have achieved strong performance across diverse tasks, yet they remain
limited in vision-centric tasks such as object counting or spatial reasoning.
We attribute this gap to the prevailing text-only supervision paradigm, which
provides only indirect guidance for the visual pathway and often leads MLLMs to
discard fine-grained visual details during training. In this paper, we present
VIsual Representation ALignment (VIRAL), a simple yet effective regularization
strategy that aligns the internal visual representations of MLLMs with those of
pre-trained vision foundation models (VFMs). By explicitly enforcing this
alignment, VIRAL enables the model not only to retain critical visual details
from the input vision encoder but also to complement additional visual
knowledge from VFMs, thereby enhancing its ability to reason over complex
visual inputs. Our experiments demonstrate consistent improvements across all
tasks on widely adopted multimodal benchmarks. Furthermore, we conduct
comprehensive ablation studies to validate the key design choices underlying
our framework. We believe this simple finding opens up an important direction
for the effective integration of visual information in training MLLMs.