成双成对:你的GRPO实为DPO
It Takes Two: Your GRPO Is Secretly DPO
October 1, 2025
作者: Yihong Wu, Liheng Ma, Lei Ding, Muzhi Li, Xinyu Wang, Kejia Chen, Zhan Su, Zhanguang Zhang, Chenyang Huang, Yingxue Zhang, Mark Coates, Jian-Yun Nie
cs.AI
摘要
群体相对策略优化(GRPO)是一种用于大语言模型(LLM)后训练的重要强化学习算法。普遍认为,GRPO需要较大的群体规模,通过精确的统计估计来确保训练的稳定性,这带来了巨大的计算开销。在本研究中,我们通过将GRPO重新定义为对比学习的形式,挑战了这一假设,揭示了其与直接偏好优化(DPO)之间的根本联系。受DPO实证成功的启发,我们探讨了最小双轮次配置(2-GRPO),这一配置先前被认为不可行。我们提供了严格的理论分析以验证2-GRPO,并通过实验证明,尽管仅使用了1/8的轮次并减少了超过70%的训练时间,其性能与16-GRPO相当。
English
Group Relative Policy Optimization (GRPO) is a prominent reinforcement
learning algorithm for post-training Large Language Models (LLMs). It is
commonly believed that GRPO necessitates a large group size to ensure stable
training via precise statistical estimation, which incurs substantial
computational overhead. In this work, we challenge this assumption by reframing
GRPO as a form of contrastive learning, which reveals a fundamental connection
to Direct Preference Optimization (DPO). Motivated by DPO's empirical success,
we investigate the minimal two-rollout case (2-GRPO), a configuration
previously deemed infeasible. We provide a rigorous theoretical analysis to
validate 2-GRPO and demonstrate empirically that it achieves performance on par
with 16-GRPO, despite using only 1/8 of the rollouts and reducing training time
by over 70%.