独立于大语言模型的自适应RAG:让问题自我表达
LLM-Independent Adaptive RAG: Let the Question Speak for Itself
May 7, 2025
作者: Maria Marina, Nikolay Ivanov, Sergey Pletenev, Mikhail Salnikov, Daria Galimzianova, Nikita Krayko, Vasily Konovalov, Alexander Panchenko, Viktor Moskvoretskii
cs.AI
摘要
大型语言模型(LLMs)易产生幻觉,而检索增强生成(RAG)虽有助于缓解此问题,却伴随着高昂的计算成本及误导信息的风险。自适应检索旨在仅在必要时进行检索,但现有方法依赖于基于LLM的不确定性估计,效率低下且不切实际。本研究提出了一种基于外部信息的轻量级、独立于LLM的自适应检索方法。我们探究了27个特征,将其分为7组,并考察了它们的混合组合。在6个问答数据集上,我们评估了这些方法的问答性能与效率。结果表明,我们的方法在保持复杂LLM方法性能的同时,显著提升了效率,展现了外部信息在自适应检索中的潜力。
English
Large Language Models~(LLMs) are prone to hallucinations, and
Retrieval-Augmented Generation (RAG) helps mitigate this, but at a high
computational cost while risking misinformation. Adaptive retrieval aims to
retrieve only when necessary, but existing approaches rely on LLM-based
uncertainty estimation, which remain inefficient and impractical. In this
study, we introduce lightweight LLM-independent adaptive retrieval methods
based on external information. We investigated 27 features, organized into 7
groups, and their hybrid combinations. We evaluated these methods on 6 QA
datasets, assessing the QA performance and efficiency. The results show that
our approach matches the performance of complex LLM-based methods while
achieving significant efficiency gains, demonstrating the potential of external
information for adaptive retrieval.Summary
AI-Generated Summary