ChatPaper.aiChatPaper

拖放式大语言模型:零样本提示到权重转换

Drag-and-Drop LLMs: Zero-Shot Prompt-to-Weights

June 19, 2025
作者: Zhiyuan Liang, Dongwen Tang, Yuhao Zhou, Xuanlei Zhao, Mingjia Shi, Wangbo Zhao, Zekai Li, Peihao Wang, Konstantin Schürholt, Damian Borth, Michael M. Bronstein, Yang You, Zhangyang Wang, Kai Wang
cs.AI

摘要

现代参数高效微调(PEFT)方法,如低秩适应(LoRA),降低了定制大型语言模型(LLMs)的成本,但仍需为每个下游数据集进行单独的优化训练。我们提出了拖放式LLMs(\textit{DnD}),一种基于提示的参数生成器,通过将少量未标注的任务提示直接映射到LoRA权重更新,从而消除了逐任务训练的需求。一个轻量级文本编码器将每批提示提炼为条件嵌入,随后通过级联的超卷积解码器转换为完整的LoRA矩阵集。一旦在多样化的提示-检查点对集合中完成训练,DnD能在数秒内生成任务特定参数,带来以下优势:i) 相比全量微调,开销降低高达12,000倍;ii) 在未见过的常识推理、数学、编程及多模态基准测试中,平均性能提升高达30%,超越最强的训练LoRAs;iii) 尽管从未接触目标数据或标签,仍展现出强大的跨领域泛化能力。我们的结果表明,基于提示的参数生成是快速定制LLMs的可行替代方案,相较于基于梯度的适应方法。项目详情请访问https://jerryliang24.github.io/DnD{https://jerryliang24.github.io/DnD}。
English
Modern Parameter-Efficient Fine-Tuning (PEFT) methods such as low-rank adaptation (LoRA) reduce the cost of customizing large language models (LLMs), yet still require a separate optimization run for every downstream dataset. We introduce Drag-and-Drop LLMs (\textit{DnD)}, a prompt-conditioned parameter generator that eliminates per-task training by mapping a handful of unlabeled task prompts directly to LoRA weight updates. A lightweight text encoder distills each prompt batch into condition embeddings, which are then transformed by a cascaded hyper-convolutional decoder into the full set of LoRA matrices. Once trained in a diverse collection of prompt-checkpoint pairs, DnD produces task-specific parameters in seconds, yielding i) up to 12,000times lower overhead than full fine-tuning, ii) average gains up to 30\% in performance over the strongest training LoRAs on unseen common-sense reasoning, math, coding, and multimodal benchmarks, and iii) robust cross-domain generalization despite never seeing the target data or labels. Our results demonstrate that prompt-conditioned parameter generation is a viable alternative to gradient-based adaptation for rapidly specializing LLMs. Our project is available at https://jerryliang24.github.io/DnD{https://jerryliang24.github.io/DnD}.
PDF8513June 23, 2025