超场:从文本实现零-shot 生成 NeRFs
HyperFields: Towards Zero-Shot Generation of NeRFs from Text
October 26, 2023
作者: Sudarshan Babu, Richard Liu, Avery Zhou, Michael Maire, Greg Shakhnarovich, Rana Hanocka
cs.AI
摘要
我们介绍了HyperFields,这是一种通过单次前向传递(可选进行一些微调)生成文本条件的神经辐射场(NeRFs)的方法。我们方法的关键在于:(i)动态超网络,学习从文本标记嵌入到NeRFs空间的平滑映射;(ii)NeRF蒸馏训练,将编码在各个NeRFs中的场景蒸馏成一个动态超网络。这些技术使得单个网络能够适应超过一百个独特场景。我们进一步证明了HyperFields学习了更通用的文本与NeRFs之间的映射,因此能够预测新颖的分布内和分布外场景,包括零样本或经过少量微调步骤。通过学习的通用映射,对HyperFields进行微调可以加速收敛,并且能够比现有的基于神经优化的方法更快地合成新颖场景,速度提高了5到10倍。我们的消融实验表明,动态架构和NeRF蒸馏对于HyperFields的表达能力至关重要。
English
We introduce HyperFields, a method for generating text-conditioned Neural
Radiance Fields (NeRFs) with a single forward pass and (optionally) some
fine-tuning. Key to our approach are: (i) a dynamic hypernetwork, which learns
a smooth mapping from text token embeddings to the space of NeRFs; (ii) NeRF
distillation training, which distills scenes encoded in individual NeRFs into
one dynamic hypernetwork. These techniques enable a single network to fit over
a hundred unique scenes. We further demonstrate that HyperFields learns a more
general map between text and NeRFs, and consequently is capable of predicting
novel in-distribution and out-of-distribution scenes -- either zero-shot or
with a few finetuning steps. Finetuning HyperFields benefits from accelerated
convergence thanks to the learned general map, and is capable of synthesizing
novel scenes 5 to 10 times faster than existing neural optimization-based
methods. Our ablation experiments show that both the dynamic architecture and
NeRF distillation are critical to the expressivity of HyperFields.