NVIDIA Nemotron Nano 2:一款精准高效的混合型 Mamba-Transformer推理模型
NVIDIA Nemotron Nano 2: An Accurate and Efficient Hybrid Mamba-Transformer Reasoning Model
August 20, 2025
作者: NVIDIA, Aarti Basant, Abhijit Khairnar, Abhijit Paithankar, Abhinav Khattar, Adi Renduchintala, Adithya Renduchintala, Aditya Malte, Akhiad Bercovich, Akshay Hazare, Alejandra Rico, Aleksander Ficek, Alex Kondratenko, Alex Shaposhnikov, Ali Taghibakhshi, Amelia Barton, Ameya Sunil Mahabaleshwarkar, Amy Shen, Andrew Tao, Ann Guan, Anna Shors, Anubhav Mandarwal, Arham Mehta, Arun Venkatesan, Ashton Sharabiani, Ashwath Aithal, Ashwin Poojary, Ayush Dattagupta, Balaram Buddharaju, Banghua Zhu, Barnaby Simkin, Bilal Kartal, Bita Darvish Rouhani, Bobby Chen, Boris Ginsburg, Brandon Norick, Brian Yu, Bryan Catanzaro, Charles Wang, Charlie Truong, Chetan Mungekar, Chintan Patel, Chris Alexiuk, Christian Munley, Christopher Parisien, Dan Su, Daniel Afrimi, Daniel Korzekwa, Daniel Rohrer, Daria Gitman, David Mosallanezhad, Deepak Narayanan, Dima Rekesh, Dina Yared, Dmytro Pykhtar, Dong Ahn, Duncan Riach, Eileen Long, Elliott Ning, Eric Chung, Erick Galinkin, Evelina Bakhturina, Gargi Prasad, Gerald Shen, Haim Elisha, Harsh Sharma, Hayley Ross, Helen Ngo, Herman Sahota, Hexin Wang, Hoo Chang Shin, Hua Huang, Iain Cunningham, Igor Gitman, Ivan Moshkov, Jaehun Jung, Jan Kautz, Jane Polak Scowcroft, Jared Casper, Jimmy Zhang, Jinze Xue, Jocelyn Huang, Joey Conway, John Kamalu, Jonathan Cohen, Joseph Jennings, Julien Veron Vialard, Junkeun Yi, Jupinder Parmar, Kari Briski, Katherine Cheung, Katherine Luna, Keith Wyss, Keshav Santhanam, Kezhi Kong, Krzysztof Pawelec, Kumar Anik, Kunlun Li, Kushan Ahmadian, Lawrence McAfee, Laya Sleiman, Leon Derczynski, Luis Vega, Maer Rodrigues de Melo, Makesh Narsimhan Sreedhar, Marcin Chochowski, Mark Cai, Markus Kliegl, Marta Stepniewska-Dziubinska, Matvei Novikov, Mehrzad Samadi, Meredith Price, Meriem Boubdir, Michael Boone, Michael Evans, Michal Bien, Michal Zawalski, Miguel Martinez, Mike Chrzanowski, Mohammad Shoeybi, Mostofa Patwary, Namit Dhameja, Nave Assaf, Negar Habibi, Nidhi Bhatia, Nikki Pope, Nima Tajbakhsh, Nirmal Kumar Juluru, Oleg Rybakov, Oleksii Hrinchuk, Oleksii Kuchaiev, Oluwatobi Olabiyi, Pablo Ribalta, Padmavathy Subramanian, Parth Chadha, Pavlo Molchanov, Peter Dykas, Peter Jin, Piotr Bialecki, Piotr Januszewski, Pradeep Thalasta, Prashant Gaikwad, Prasoon Varshney, Pritam Gundecha, Przemek Tredak, Rabeeh Karimi Mahabadi, Rajen Patel, Ran El-Yaniv, Ranjit Rajan, Ria Cheruvu, Rima Shahbazyan, Ritika Borkar, Ritu Gala, Roger Waleffe, Ruoxi Zhang, Russell J. Hewett, Ryan Prenger, Sahil Jain, Samuel Kriman, Sanjeev Satheesh, Saori Kaji, Sarah Yurick, Saurav Muralidharan, Sean Narenthiran, Seonmyeong Bak, Sepehr Sameni, Seungju Han, Shanmugam Ramasamy, Shaona Ghosh, Sharath Turuvekere Sreenivas, Shelby Thomas, Shizhe Diao, Shreya Gopal, Shrimai Prabhumoye, Shubham Toshniwal, Shuoyang Ding, Siddharth Singh, Siddhartha Jain, Somshubra Majumdar, Stefania Alborghetti, Syeda Nahida Akter, Terry Kong, Tim Moon, Tomasz Hliwiak, Tomer Asida, Tony Wang, Twinkle Vashishth, Tyler Poon, Udi Karpas, Vahid Noroozi, Venkat Srinivasan, Vijay Korthikanti, Vikram Fugro, Vineeth Kalluru, Vitaly Kurin, Vitaly Lavrukhin, Wasi Uddin Ahmad, Wei Du, Wonmin Byeon, Ximing Lu, Xin Dong, Yashaswi Karnati, Yejin Choi, Yian Zhang, Ying Lin, Yonggan Fu, Yoshi Suhara, Zhen Dong, Zhiyu Li, Zhongbo Zhu, Zijia Chen
cs.AI
摘要
我们推出Nemotron-Nano-9B-v2,这是一款混合Mamba-Transformer语言模型,旨在提升推理任务的处理吞吐量,同时在与同等规模模型的对比中达到顶尖的准确率。Nemotron-Nano-9B-v2基于Nemotron-H架构,该架构将传统Transformer中的大部分自注意力层替换为Mamba-2层,从而在生成推理所需的长思维轨迹时显著提升推理速度。我们首先采用FP8训练方案,在20万亿个token上预训练了一个120亿参数的模型(Nemotron-Nano-12B-v2-Base)。在对Nemotron-Nano-12B-v2-Base进行对齐后,我们运用Minitron策略对模型进行压缩与蒸馏,目标是在单个NVIDIA A10G GPU(22GiB内存,bfloat16精度)上实现高达128k token的推理。与现有同等规模模型(如Qwen3-8B)相比,Nemotron-Nano-9B-v2在推理基准测试中展现出相当或更优的准确率,同时在8k输入和16k输出token的推理场景下,推理吞吐量最高提升至6倍。我们已在Hugging Face上发布Nemotron-Nano-9B-v2、Nemotron-Nano12B-v2-Base及Nemotron-Nano-9B-v2-Base的检查点,以及大部分预训练和训练后数据集。
English
We introduce Nemotron-Nano-9B-v2, a hybrid Mamba-Transformer language model
designed to increase throughput for reasoning workloads while achieving
state-of-the-art accuracy compared to similarly-sized models.
Nemotron-Nano-9B-v2 builds on the Nemotron-H architecture, in which the
majority of the self-attention layers in the common Transformer architecture
are replaced with Mamba-2 layers, to achieve improved inference speed when
generating the long thinking traces needed for reasoning. We create
Nemotron-Nano-9B-v2 by first pre-training a 12-billion-parameter model
(Nemotron-Nano-12B-v2-Base) on 20 trillion tokens using an FP8 training recipe.
After aligning Nemotron-Nano-12B-v2-Base, we employ the Minitron strategy to
compress and distill the model with the goal of enabling inference on up to
128k tokens on a single NVIDIA A10G GPU (22GiB of memory, bfloat16 precision).
Compared to existing similarly-sized models (e.g., Qwen3-8B), we show that
Nemotron-Nano-9B-v2 achieves on-par or better accuracy on reasoning benchmarks
while achieving up to 6x higher inference throughput in reasoning settings like
8k input and 16k output tokens. We are releasing Nemotron-Nano-9B-v2,
Nemotron-Nano12B-v2-Base, and Nemotron-Nano-9B-v2-Base checkpoints along with
the majority of our pre- and post-training datasets on Hugging Face.